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Foreword

The purpose of this volume is to foster and present new directions and solu-
tions in broadly perceived intelligent systems. The emphasis is on constructive
approaches that can be of utmost important for a further progress and imple-
mentability.

The volume is focused around a crucial prerequisite for developing and
implementing intelligent systems, namely to computationally represent and
manipulate knowledge (both theory and information), augmented by an abil-
ity to operationally deal with large-scale knowledge bases, complex forms of
situation assessment, sophisticated value-based modes of reasoning, and au-
tonomic and autonomous system behaviours.

These challenges exceed the capabilities and performance capacity of cur-
rent open standards, approaches to knowledge representation, management
and system architectures. The intention of the editors and contributors of
this volume is to present tools and techniques that can help in filling this gap.

New system architectures must be devised in response to the needs of
exhibiting intelligent behaviour, cooperate with users and other systems in
problem solving, discovery, access, retrieval and manipulation of a wide variety
of “data” and knowledge, and reason under uncertainty in the context of a
knowledge-based economy and society.

This volume provides a source wherein academics, researchers, and prac-
titioners may derive high-quality, original and state-of-the-art papers describ-
ing theoretical aspects, systems architectures, analysis and design tools and
techniques, and implementation experiences in intelligent systems where in-
formation and knowledge management should be mainly characterised as a
net-centric infrastructure riding on the fifth wave of “distributed intelligence.”

An urgent need for editing such a volume has occurred as a result of
vivid discussions and presentations at the “IEEE-IS’ 2006 – The 2006 Third
International IEEE Conference on Intelligent Systems” held in London, UK, at
the University of Westminster in the beginning of September, 2006. They have
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VI Foreword

triggered our editorial efforts to collect many valuable inspiring works written
by both conference participants and other experts in this new and challenging
field.

LONDON P. Chountas
2007 I. Petrounias

J. Kacprzyk
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Applying Data Mining Algorithms to Calculate
the Quality of Service of Workflow Processes

Jorge Cardoso

Department of Mathematics and Engineering, 9000-390 Funchal, Portugal
jcardoso@uma.pt

Summary. Organizations have been aware of the importance of Quality of Service
(QoS) for competitiveness for some time. It has been widely recognized that workflow
systems are a suitable solution for managing the QoS of processes and workflows.
The correct management of the QoS of workflows allows for organizations to increase
customer satisfaction, reduce internal costs, and increase added value services. In
this chapter we show a novel method, composed of several phases, describing how
organizations can apply data mining algorithms to predict the QoS for their run-
ning workflow instances. Our method has been validated using experimentation by
applying different data mining algorithms to predict the QoS of workflow.

1 Introduction

The increasingly global economy requires advanced information systems. Busi-
ness Process Management Systems (BPMS) provide a fundamental infrastruc-
ture to define and manage several types of business processes. BPMS, such
as Workflow Management Systems (WfMS), have become a serious competi-
tive factor for many organizations that are increasingly faced with the chal-
lenge of managing e-business applications, workflows, Web services, and Web
processes. WfMS allow organizations to streamline and automate business
processes and re-engineer their structure; in addition, they increase efficiency
and reduce costs.

One important requirement for BMPS and WfMS is the ability to manage
the Quality of Service (QoS) of processes and workflows [1]. The design and
composition of processes cannot be undertaken while ignoring the importance
of QoS measurements. Appropriate control of quality leads to the creation
of quality products and services; these, in turn, fulfill customer expectations
and achieve customer satisfaction. It is not sufficient to just describe the
logical or operational functionality of activities and workflows. Rather, design
of workflows must include QoS specifications, such as response time, reliability,
cost, and so forth.

J. Cardoso: Applying Data Mining Algorithms to Calculate the Quality of Service of Workflow

Processes, Studies in Computational Intelligence (SCI) 109, 3–18 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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One important activity, under the umbrella of QoS management, is the
prediction of the QoS of workflows. Several approaches can be identified to
predict the QoS of workflows before they are invoked or during their execu-
tion, including statistical algorithms [1], simulation [2], and data mining based
methods [3, 4].

The latter approach, which uses data mining methods to predict the QoS
of workflows, has received significant attention and has been associated with a
recent new area coined as Business Process Intelligence (BPI). In this paper,
we investigate the enhancements that can be made to previous work on BPI
and business process quality to develop more accurate prediction methods.

The methods presented in [3, 4] can be extended and refined to provide a
more flexible approach to predict the QoS of workflows. Namely, we intend
to identify the following limitations that we will be addressing in this paper
with practical solutions and empirical testing:

1. In contrast to [4], we carry out QoS prediction based on path mining
and by creating a QoS activity model for each workflow activity. This
combination increases the accuracy of workflow QoS prediction.

2. In [4], time prediction is limited since workflow instances can only be
classified to “have” or “not to have” a certain behavior. In practice, it
means that it is only possible to determine that a workflow instance will
have, for example, the “last more than 15 days” behavior or will not have
that behavior. This is insufficient since it does not give an actual estimate
for the time a workflow will need for its execution. Our method is able
to deduce that a workflow wi will probably take 5 days and 35 min to be
completed with a prediction accuracy of 78%.

3. In [4], the prediction of the QoS of a workflow is done using decision trees.
We will show that MultiBoost Näıve Bayes outperforms the use of decision
trees to predict the QoS of a workflow.

This chapter is structured as follows: In Sect. 2, we present our method of
carrying out QoS mining based on path mining, QoS activity models, and
workflow QoS estimation. Section 3 describes the set of experiments that we
have carried out to validate the QoS mining method we propose. Section 4
presents the related work in this area. Finally, Sect. 5 presents our conclusions.

2 Motivation

Nowadays, a considerable number of organizations are adopting workflow
management systems to support their business processes. The current systems
available manage the execution of workflow instances without any quality of
service management on important parameters such as delivery deadlines, re-
liability, and cost of service.

Let us assume that a workflow is started to deliver a particular service to
a customer. It would be helpful for the organization supplying the service to
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be able to predict how long the workflow instance will take to be completed or
the cost associated with its execution. Since workflows are non-deterministic
and concurrent, the time it takes for a workflow to be completed and its cost
depends not only on which activities are invoked during the execution of the
workflow instance, but also depends on the time/cost of its activities. Predict-
ing the QoS that a workflow instance will exhibit at runtime is a challenge
because a workflow schema w can be used to generated n instances, and sev-
eral instances wi (i ≤ n) can invoke a different subset of activities from w.
Therefore, even if the time and cost associated with the execution of activities
were static, the QoS of the execution of a workflow would vary depending on
the activities invoked at runtime.

For organizations, being able to predict the QoS of workflows has several
advantages. For example, it is possible to monitor and predict the QoS of
workflows at any time. Workflows must be rigorously and constantly moni-
tored throughout their life cycles to assure compliance both with initial QoS
requirements and targeted objectives. If a workflow management system iden-
tifies that a running workflow will not meet initial QoS requirements, then
adaptation strategies [5] need to be triggered to change the structure of a
workflow instance. By changing the structure of a workflow we can reduce its
cost or execution time.

3 QoS Mining

In this section we focus on describing a new method that can be used by
organizations to apply data mining algorithms to historical data and predict
QoS for their running workflow instances. The method presented in this paper
constitutes a major and significant difference from the method described in [4].
The method is composed of three distinct phases (Fig. 1) that will be explained
in the following sections.

In the first phase, the workflow log is analyzed and data mining algorithms
are applied to predict the path that will be followed by workflow instances at

Fig. 1. Phases of workflow QoS mining
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runtime. This is called path mining. Path mining identifies which activities
will most likely be executed in the context of a workflow instance. Once we
know the path, we also know the activities that will be invoked at runtime.
For each activity we construct a QoS activity model based on historical data
which describes the runtime behavior (duration and cost) of an activity. In
the last phase, we compute the QoS of the overall workflow based on the path
predicted and from the QoS activity models using a set of reduction rules.

3.1 Path Mining

As we have stated previously, the QoS of a workflow is directly dependent on
which activities are invoked during its execution. Different sets of activities
can be invoked at runtime because workflows are non-deterministic. Path
mining [6,7] uses data mining algorithms to predict which path will be followed
when executing a workflow instance.

Definition. (Path): A path P is a continuous mapping P: [a, b] → C◦, where
P(a) is the initial point, P(b) is the final point, and C◦ denotes the space of
continuous functions. A path on a workflow is a sequence {t1 , t2 , . . . , tn} such
that {t1 , t2}, {t2 , t3}, . . . , {tn−1 , tn} are transitions of the workflow and the
ti are distinct. Each ti is connected to a workflow activity.

A path is composed of a set of activities invoked and executed at runtime
by a workflow. For example, when path mining is applied to the simple work-
flow illustrated in Fig. 2, the workflow management system can predict the
probability of paths A, B, and C being followed at runtime. Paths A and B
have each six activities, while path C has only four activities. In Fig. 2, the
symbol ⊕ represented non-determinism (i.e., a xor-split or xor-join).

To perform path mining, current workflow logs need to be extended to
store information indicating the values and the type of the input parameters

Workflow Check
Home
Loan

Approve
Home
Loan

Notify
Home

Loan ClientApprove
Home Loan
Conditionally

f(a1,...,an)

g(b1,...,bm)
Workflow

log

Path Mining

Path A: 76%
Path B: 21%
Path C: 03%

Notify
Education Loan Client

Archive
Application

A
B
C

Check
Education

Loan

Fill
Loan

Request

Check
Loan
Type

Fig. 2. Path mining
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Table 1. Extended workflow log

Workflow log extension

. . . Parameter/Value Path

. . . int SSN = 7774443333;
string loan-type =“car-loan”
. . .

. . .

. . . string name= jf@uma.pt;
. . .

{FillLoanRequest,
CheckLoanType,
CheckCarLoan,
ApproveCarLoan,
NotifyCarLoanClient,
ArchiveApplication}

. . . . . . . . .

passed to activities and the output parameters received from activities. The
values of inputs/outputs are generated at runtime during the execution of
workflow instances. Table 1 shows an extended workflow log which accommo-
dates input/output values of activity parameters that have been generated at
runtime. Each ‘Parameter/Value’ entry as a type, a parameter name, and a
value (for example, string loan-type=“car-loan”).

Additionally, the log needs to include path information: a path describing
the activities that have been executed during the enactment of a process.
This information can easily be stored in the log. From the implementation
perspective it is space efficient to store in the log only the relative path,
relative to the previous activity, not the full path. Table 1 shows the full path
approach because it is easier to understand how paths are stored in the log.

During this phase, and compared to [3,4], we only need to add information
on paths to the log. Once enough data is gathered in the workflow log, we
can apply data mining methods to predict the path followed by a process
instance at runtime based on instance parameters. In Sect. 4.2, we will show
how the extended workflow log can be transformed to a set of data mining
instances. Each data mining instance will constitute the input to machine
learning algorithm.

3.2 QoS Activity Model Construction

After carrying out path mining, we know which activities a workflow instance
will be invoking in the near future. For each activity that will potentially
be invoked we build what we call a QoS activity model. The model includes
information about the activity behavior at runtime, such as its cost and the
time the activity will take to execute [1].

Each QoS activity model can be constructed by carrying out activity profil-
ing. This technique is similar to the one used to construct operational profiles.
Operational profiles have been proposed by Musa [8, 9] to accurately predict
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future the reliability of applications. The idea is to test the activity based on
specific inputs. In an operational profile, the input space is partitioned into
domains, and each input is associated with a probability of being selected dur-
ing operational use. The probability is employed in the input domain to guide
input generation. The density function built from the probabilities is called
the operational profile of the activity. At runtime, activities have a probability
associated with each input. Musa [9] described a detailed procedure for devel-
oping a practical operational profile for testing purposes. In our case, we are
interested in predicting, not the reliability, but the cost and time associated
with the execution of workflow activities.

During the graphical design of a workflow, the business analyst and domain
expert construct a QoS activity model for each activity using activity profiles
and empirical knowledge about activities. The construction of a QoS model for
activities is made at design time and re-computed at runtime, when activities
are executed. Since the initial QoS estimates may not remain valid over time,
the QoS of activities is periodically re-computed, based on the data of previous
instance executions stored in the workflow log.

The re-computation of QoS activity metrics is based on data coming from
designer specifications (i.e. the initial QoS activity model) and from the work-
flow log. Depending on the workflow data available, four scenarios can occur
(Table 2) (a) For a specific activity a and a particular dimension Dim (i.e.,
time or cost), the average is calculated based only on information introduced
by the designer (Designer AverageDim(a)); (b) the average of an activity a
dimension is calculated based on all its executions independently of the work-
flow that executed it (MultiWorkflow AverageDim (a)); (c) the average of the
dimension Dim is calculated based on all the times activity a was executed
in any instance from workflow w (Workflow AverageDim(t, w)); and (d) the
average of the dimension of all the times activity t was executed in instance i
of workflow w (Instance AverageDim(t, w, i)).

Let us assume that we have an instance i of workflow w running and that
we desire to predict the QoS of activity a ∈ w. The following rules are used to
choose which formula to apply when predicting QoS. If activity a has never

Table 2. QoS dimensions computed at runtime

(a) QoSDim(a) = Designer AverageDim(a)
(b) QoSDim

′(a) = wi1
∗ Designer AverageDim(a) +

wi2
∗ MultiWorkflow AverageDim(a)

(c) QoSDim(a, w) = wi1
∗ Designer AverageDim(a) +

wi2
∗ MultiWorkflow AverageDim(a) +

wi3
∗ Workflow AverageDim(a, w)

(d) QoSDim(a, w, i) = wi1
∗ Designer AverageDim(a) +

wi2
∗ MultiWorkflow AverageDim(a) +

wi3
∗ Workflow AverageDim(a, w)+

wi4
∗ Instance Workflow AverageDim(a, w, i)
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been executed before, then formula (a) is chosen to predict activity QoS,
since there is no other data available in the workflow log. If activity a has
been executed previously, but in the context of workflow wn, and w ! = wn,
then formula (b) is chosen. In this case we can assume that the execution of
a in workflow wn will give a good indication of its behavior in workflow w.
If activity a has been previously executed in the context of workflow w, but
not from instance i, then formula (c) is chosen. Finally, if activity a has been
previously executed in the context of workflow w, and instance i, meaning
that a loop has been executed, then formula (d) is used.

The workflow management system uses the formulae from Table 2 to pre-
dict the QoS of activities. The weights wik are manually set. They reflect the
degree of correlation between the workflow under analysis and other work-
flows for which a set of common activities is shared. At this end of this second
phase, we already know the activities of a workflow instance that will most
likely be executed at runtime, and for each activity we have a model of its
QoS, i.e. we know the time and cost associated with the invocation of the
activity.

3.3 Workflow QoS Estimation

Once we know the path, i.e. the set of activities which will be executed by a
workflow instance, and we have a QoS activity model for each activity, we have
all the elements required to predict the QoS associated with the execution of
a workflow instance.

To compute the estimated QoS of a process in execution, we use a variation
of the Stochastic Workflow Reduction (SWR) algorithm [1]. The variation of
the SWR algorithm that we use does not include probabilistic information
about transitions. The SWR is an algorithm for computing aggregate QoS
properties step-by-step. At each step a reduction rule is applied to shrink the
process. At each step the time and cost of the activities involved is computed.
This is continued until only one activity is left in the process. When this state
is reached, the remaining activity contains the QoS metrics corresponding to
the workflow under analysis. For the reader interested in the behavior of the
SWR algorithm we refer to [1].

For example, if the path predicted in the first phase of our QoS mining
method includes a parallel system, as show in Fig. 3, the parallel system
reduction rule is applied to a part of the original workflow (Fig. 3a) and a
new section of the workflow is created (Fig. 3b).

A system of parallel activities t1 , t2 , . . . , tn, an and split activity ta, and an
and join activity tb can be reduced to a sequence of three activities ta, t1n, and
tb. In this reduction, the incoming transitions of ta and the outgoing transition
of activities tb remain the same. The only outgoing transitions from activity
ta and the only incoming transitions from activity tb are the ones shown in the
figure below.
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tbta
*

(a) (b)

* tbta t1n

t1

t2

tn

Fig. 3. Parallel system reduction

The QoS of the new workflow is computed using the following formulae
(the QoS of tasks ta and tb remain unchanged):

Time(t1n) = Maxi∈{1..n} {Time(ti)} and

Cost(t1n) =
∑

1≤i≤.n

Cost(ti)

Reduction rules exist for sequential, parallel, conditional, loop, and network
systems [1]. These systems or pattern are fundamental since a study on fifteen
major workflow management systems [10] showed that most systems support
the reduction rules presented. Nevertheless, additional reduction rules can be
developed to cope with the characteristics and features of specific workflow
systems.

Our approach to workflow QoS estimation – which uses a variation of the
SWR algorithm – addresses the third point that we raised in the introduction
and shows that the prediction of workflow QoS can be used to obtain actual
metrics (e.g. the workflow instance w will take 3 days and 8 h to execute) and
not only information that indicates if an instance takes “more” than D days
or “less” than D days to execute.

4 Experiments

In this section, we describe the data set that has been used to carry out
workflow QoS mining, how to apply different data mining algorithms and
how to select the best ones among them, and finally we discuss the results
obtained. While we describe the experiments carried out using the loan process
application (see Fig. 4), we have replicated our experiments using a university
administration process. The conclusions that we have obtained are very similar
to the one presented in this section.
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Fig. 4. The loan process

4.1 Workflow Scenario

A major bank has realized that to be competitive and efficient it must adopt
a new and modern information system infrastructure. Therefore, a first step
was taken in that direction with the adoption of a workflow management
system to support its processes. One of the services supplied by the bank is
the loan process depicted in Fig. 4. While the process is simple to understand,
a complete explanation of the process can be found in [6].

4.2 Path Mining

To carry out path mining we need to log information about the execution of
workflow instances. But before storing workflow instances data we need to
extended our workflow management log system, as explained in Sect. 3.1,
to store information indicating the values of the input parameters passed
to activities and the output parameters received from activities (see [6, 7]
for an overview of the information typically stored in the workflow log). The
information also includes the path that has been followed during the execution
of workflow instances.

To apply data mining algorithms to carry out path mining, the data
present in the workflow log need to be converted to a suitable format to
be processed by data mining algorithms. Therefore, we extract data from the
workflow log to construct data mining instances. Each instance will constitute
an input to machine learning and is characterized by a set of six attributes:

income, loan type, loan amount , loan years,Name,SSN
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The attributes are input and output parameters from the workflow activ-
ities. The attributes income, loan amount, loan years and SSN are numeric,
whereas the attributes loan type and name are nominal. Each instance is also
associated with a class (named [path]) indicating the path that has been fol-
lowed during the execution of a workflow when the parameters were assigned
specific values. Therefore, the final structure of a data mining instance is:

income, loan type, loan amount , loan years,Name,SSN , [path]

In our scenario, the path class can take one of six possible alternatives
indicating the path followed during the execution of a workflow when activity
parameters were assigned specific values (see Fig. 4 to identify the six possible
paths that can be followed during the execution of a loan workflow instance).

Having our extended log ready, we have executed the workflow from Fig. 4
and logged a set of 1,000 workflow instance executions. The log was then con-
verted to a data set suitable to be processed by machine learning algorithms,
as described previously.

We have carried out path mining to our data set using four distinct
data mining algorithms: J48 [11], Näıve Bayes (NB), SMO [12], and Multi-
Boost [13]. J48 was selected as a good representative of a symbolic method,
Näıve Bayes as a representative of a probabilistic method, and the SMO al-
gorithm as representative of a method that has been successfully applied in
the domain of text-mining. Multiboost is expected to improve performance of
single classifiers with the introduction of meta-level classification.

Since when we carry out path mining to a workflow not all the activity
input/ouput parameters may be available (some activities may not have been
invoked by the workflow management system when path mining is started),
we have conducted experiments with a variable number of parameters (in our
scenario, the parameters under analysis are: income, loan type, loan amount,
loan years, name, and SSN) ranging from 0 to 6. We have conducted 64 exper-
iments (26); analyzing a total of 64000 records containing data from workflow
instance executions.

Accuracy of Path Mining

The first set of experiments was conducted using J48, Näıve Bayes, and SMO
methods with and without the Multiboost (MB) method. We obtained a large
number of results that are graphically illustrated in Fig. 5. The chart indicates
for each of the 64 experiments carried out, the accuracy of path mining.

The chart indicates, for example, that in experiment no 12, when we use
two parameters to predict the path that will be followed by a workflow in-
stance from Fig. 4, we achieve a prediction accuracy of 87.13% using the
J48 algorithm. Due to space limitation, the chart in Fig. 4 does not indicate
which parameters or the number of parameters that have been utilized in each
experiment.
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Fig. 5. Accuracy analysis of path mining

Table 3. Summary results of accuracy analysis of path mining

J48 NB SMO

Avg acc. 75.43% 78.84% 77.79%
Min acc. 24.55% 30.84% 29.04%
Max acc. 93.41% 96.41% 93.11%

MB J48 MB NB MB SMO

Avg acc. 79.74% 81.11% 78.28%
Min acc. 24.55% 30.84% 29.04%
Max acc. 94.61% 97.31% 96.11%

For reasons of simplicity and as a summary, we computed the average, the
minimum, and the maximum accuracy for each method for all the experiments
carried out. The results are shown in Table 3.

On average the Näıve Bayes approach performs better than all other sin-
gle methods when compared to each other. When the number of parameters
is increased, the accuracy of Näıve Bayes improves. It can be seen that all
the methods produced more accurate results when a more appropriate set of
parameters was proposed. The worst results were produced by the J48 and
SMO algorithms. It is safe to assume that these algorithms overfitted and
were not able to find a generalized concept. That is probably a result of the
nature of the dataset that contains parameters and that introduced noise.
These results address the third point that was raised in the introduction and
show that path prediction using MultiBoost Näıve Bayes outperforms the use
of decision trees.

Next we added the meta-level of the multiboost algorithm and repeated
the experiments. As expected, the multiboost approach made more accurate
prognoses. All the classifiers produced the highest accuracy in Experiment
16, since this experiment includes the four most informative parameters (i.e.
income, loan type, loan amount, and loan years). In order to evaluate which
parameters are the most informative, we have used information gain.
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4.3 QoS Activity Model Construction

Once we have determined the most probable path that will be followed by
a workflow at runtime, we know which activities a workflow instance will be
invoking. At this stage, we need to construct a QoS activity model from each
activity of the workflow. Since this phase is independent of the previous one,
in practice it can be carried out before path mining.

Since we have 14 activities in the workflow illustrated in Fig. 4, we need
to construct fourteen QoS activity models. Each model is constructed using
a profiling methodology (profiling was described in Sect. 3.2). When carrying
out activity profiling we determine the time an activity will take to be executed
(i.e. Activity Response Time (ART)) and its cost (i.e. Activity cost (AC)).
Table 4 illustrates the QoS activity model constructed for the Check Home
Loan activity in Fig. 4 using profiling.

This static QoS activity model was constructed using activity profiling.
When a sufficient number of workflows have been executed and the log has a
considerable amount of data, we re-compute the static QoS activity at run-
time, originating a dynamic QoS activity model. The re-computation is done
based on the functions presented in Table 2. Due to space limitations we do
not show the dynamic QoS activity model. It has exactly the same structure
as the model presented in Table 4, but with more accurate values since they
reflect the execution of activities in the context of several possible workflows.

4.4 Workflow QoS Estimation

As we have already mentioned, to compute the estimated QoS of a workflow
in execution, we use a variation of the Stochastic Workflow Reduction (SWR)
algorithm. The SWR aggregates the QoS activity models of each activity step-
by-step. At each step a reduction rule is applied to transform and shrink the
process and the time and cost of the activities involved is computed. This
is continued until only one activity is left in the process. When this state is
reached, the remaining activity contains the QoS metrics corresponding to
the workflow under analysis. A graphical simulation of applying the SWR
algorithm to our workflow scenario is illustrated in Fig. 6.

The initial workflow (a) is transformed to originate workflow (b) by apply-
ing the conditional reduction rule to two conditional structures identified in
the figure with a box (dashed line). Workflow (b) is further reduced by apply-
ing the sequential reduction rule to three sequential structures also identified

Table 4. QoS activity model for the Check Home Loan activity

Static QoS model

Min value Avg value Max value

Time (min) 123 154 189
Cost (euros) 4.80 5.15 5.70
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Fig. 6. SWR algorithm applied to our workflow example
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Fig. 7. QoS prediction for time

with a box (dashed line). The resulting workflow, workflow (c), is transformed
several times to obtain workflow (d) and, finally, workflow (e). The final work-
flow (e) is composed of only one activity. Since at each transformation step
SWR algorithm aggregates the QoS activity models involved in the transfor-
mation, the remaining activity contains the QoS metrics corresponding to the
initial workflow under analysis.

4.5 QoS Experimental Results

Our experiments have been conducted in the following way. We have selected
100 random workflow instances from our log. For each instance, we have com-
puted the real QoS (time and cost) associated with the instance. We have also
computed the predicted QoS using our method. The results of QoS prediction
for the loan process are illustrated in Fig. 7.

The results clearly show that the QoS (Fig. 8) mining method yields esti-
mations that are very close to the real QoS of the running processes.
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5 Related Work

Process and workflow mining is addressed in several papers and a detailed
survey of this research area is provided in [14]. In [3, 4], a Business Process
Intelligence (BPI) tool suite that uses data mining algorithms to support
process execution by providing several features, such as analysis and prediction
is presented. In [15] and [16] a machine learning component able to acquire
and adapt a workflow model from observations of enacted workflow instances
is described. Agrawal et al. [17] propose an algorithm that allows the user to
use existing workflow execution logs to automatically model a given business
process presented as a graph. Chandrasekaran et al. [2] describe a simulation
coupled with a Web Process Design Tool (WPDT) and a QoS model [1] to
automatically simulate and analyze the QoS of Web processes. While the
research on QoS for BMPS is limited, the research on time management, which
is under the umbrella of QoS process, has been more active and productive.
Eder et al. [18] and Pozewaunig et al. [19] present an extension of CMP and
PERT frameworks by annotating workflow graphs with time, in order to check
the validity of time constraints at process build-time.

6 Conclusions

The importance of QoS (Quality of Service) management for organizations
and for workflow systems has already been much recognized by academia
and industry. The design and execution of workflows cannot be undertaken
while ignoring the importance of QoS measurements since they directly impact
the success of organizations. In this paper we have shown a novel method
that allows us to achieve high levels of accuracy when predicting the QoS of
workflows. Our first conclusion indicates that workflow QoS mining should
not be applied as a one-step methodology to workflow logs. Instead, if we use
a methodology that includes path mining, QoS activity models, and workflow
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QoS estimation, we can obtain very good prediction accuracy. Our second
conclusion indicates that the MultiBoost (MB) Näıve Bayes approach is the
data mining algorithm that yields the best workflow QoS prediction results.

References

1. Cardoso, J. et al., Modeling Quality of Service for workflows and Web Service
Processes. Web Semantics: Science, Services and Agents on the World Wide
Web Journal, 2004. 1(3): pp. 281–308

2. Chandrasekaran, S. et al., Service Technologies and Their Synergy with Simula-
tion. in Proceedings of the 2002 Winter Simulation Conference (WSC’02). 2002.
San Diego, California. pp. 606–615

3. Grigori, D. et al., Business Process Intelligence. Computers in Industry, 2004.
53: pp. 321–343

4. Grigori, D. et al., Improving Business Process Quality through Exception Under-
standing, Prediction, and Prevention. in 27th VLDB Conference. 2001. Roma,
Italy

5. Cardoso, J. and A. Sheth. Adaptation and Workflow Management Systems.
in International Conference WWW/Internet 2005. 2005. Lisbon, Portugal.
pp. 356–364

6. Cardoso, J., Path Mining in Web processes Using Profiles, in Encyclopedia of
Data Warehousing and Mining, J. Wang, Editor. 2005, Idea Group Inc. pp.
896–901

7. Cardoso, J. and M. Lenic. Web Process and Workflow Path mining Using
the multimethod approach. Journal of Business Intelligence and Data Mining
(IJBIDM). submitted

8. Musa, J.D., Operational Profiles in Software-Reliability Engineering. IEEE Soft-
ware, 1993. 10(2): pp. 14–32

9. Musa, J.D., Software reliability engineering: more reliable software, faster dev-
elopment and testing. 1999, McGraw-Hill, New York

10. van der Aalst, W.M.P., et al., Workflow patterns homepage. 2002,
http://tmitwww.tm.tue.nl/research/patterns

11. Weka, Weka. 2004
12. Platt, J., Fast Training of Support Vector Machines Using Sequential Mini-

mal Optimization, in Advances in Kernel Methods – Support Vector Learning,
B. Scholkopf, C.J.C. Burges, and A.J. Smola, Editors. 1999, MIT, Cambridge,
MA. pp. 185–208

13. Webb, I.G., MultiBoosting: A Technique for Combining Boosting and Wagging.
Machine Learning, 2000. 40(2): pp. 159–196

14. van der Aalst, W.M.P. et al., Workflow Mining: A Survey of Issues and Ap-
proaches. Data and Knowledge Engineering (Elsevier), 2003. 47(2): pp. 237–267

15. Herbst, J. and D. Karagiannis. Integrating Machine Learning and Workflow
Management to Support Acquisition and Adaption of Workflow Models. in Ninth
International Workshop on Database and Expert Systems Applications. 1998.
pp. 745–752

16. Weijters, T. and W.M.P. van der Aalst. Process Mining: Discovering Work-
flow Models from Event-Based Data. in 13th Belgium-Netherlands Conference
on Artificial Intelligence (BNAIC 2001). 2001. Amsterdam, The Netherlands.
pp. 283–290



www.manaraa.com

18 J. Cardoso

17. Agrawal, R., D. Gunopulos, and F. Leymann. Mining Process Models from
Workflow Logs. in Sixth International Conference on Extending Database Tech-
nology. 1998. Springer, Valencia, Spain. pp. 469–483

18. Eder, J. et al., Time Management in Workflow Systems. in BIS’99 3rd Inter-
national Conference on Business Information Systems. 1999. Springer Verlag,
Poznan, Poland. pp. 265–280

19. Pozewaunig, H., J. Eder, and W. Liebhart. ePERT: Extending PERT for Work-
flow Management systems. in First European Symposium in Advances in Data-
bases and Information Systems (ADBIS). 1997. St. Petersburg, Russia. pp.
217–224



www.manaraa.com

Utilisation Organisational Concepts
and Temporal Constraints for Workflow
Optimisation

D.N. Wang and I. Petrounias

School of Informatics, University of Manchester, UK
dorothy.wang@postgrad.manchester.ac.uk,
ilias.petrounias@manchester.ac.uk

Summary. Workflow systems have been recognised as a way of modelling business
processes. The issue of workflow optimisation has received a lot of attention, but the
issue of temporal constraints in this area has received significantly less. Issues that
come from the enterprise, such as actors performing tasks, resources that these tasks
utilise, etc. have not been taken into account. This chapter proposes a combination
of utilisation of enterprise modelling issues and temporal constraints in order to
produce a set of rules that aid workflow optimisation and therefore, business process
improvement.

1 Introduction

Business processes are the key elements to achieving competitive advantage.
Organisational effectiveness is depending on them. To meet new business chal-
lenges and opportunities, improving existing business processes is an impor-
tant issue for organisations. A Business Process is the execution of a series of
tasks leading to the achievement of business results, such as creation of a prod-
uct or service. Workflows have been considered as a means to model business
processes. Time and cost constraints are measurements for business process
performance. The execution time of a single business task can be improved,
but, the overall performance of the business process is hard to optimise. This
is further complicated by the following factors:

– There are different types of workflow instances and if any task changes in
a workflow, this may or may not effect other tasks, depending upon the
before mentioned types.

– The execution time of each task can be fixed, not fixed or even indefinite.
– An actor is somebody (or something) that will perform business tasks.

The actor’s workload and availability are hard to compute. The actor may
participate in multiple workflow tasks, have different availability schedules
and the business task may not be executed straight away.

D.N. Wang and I. Petrounias: Utilisation Organisational Concepts and Temporal Constraints

for Workflow Optimisation, Studies in Computational Intelligence (SCI) 109, 19–42 (2008)
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Thus, it is necessary to consider these factors, and also the interrelation-
ships between tasks also need to be observed.

This chapter is proposing a new approach to the overall improvement of
business processes that addresses the limitations of existing workflow solu-
tions. It attempts to answer the following questions: How do we find what
can be improved? When can a task and whole process be improved? The first
question is answered by looking at each task within a workflow and examining
the concepts related to them with an enterprise model. The second question
is answered by a set of general rules proposed by this study and they address
the cases in which processes can be improved and tasks executed in parallel.
These questions have not been explicitly addressed in previous studies. The
rest of the chapter is organised as follows. Section 2 discusses existing work
in business process improvement. Section 3 reviews the enterprise modelling
concepts. Section 4 identifies the possible workflow routings by using Allen’s
temporal interval inferences. Section 5 describes the approach used to exam-
ine the concepts of tasks and processes within an enterprise model. Section 6
describes a set of possible cases in which processes can be improved and tasks
executed in parallel. Section 7 describes a case study by applying these rules.
Section 8 summarises the proposed approach and suggests further work.

2 An Overview of Existing Work

Business process improvement involves optimising the process in workflow
specification. Previous studies are based on two categories: workflow optimi-
sation and modelling temporal constraints for workflow systems.

Workflow optimisation has received a lot of attention in the area of work-
flow scheduling, elimination of handoffs and job shop scheduling. [1] proposed
a new methodology designed to optimally consolidate tasks in order to reduce
the overall cycle time. This methodology takes into account the following pa-
rameters: precedence of information flow, loss of specification, alignment of
decision rights, reduction in handoffs and technology support costs. Conse-
quently, the organisation could achieve better results due to the elimination
of handoffs. Baggio et al. [2] suggest a new approach: ‘the Guess and Solve
Technique’. The approach applies scheduling techniques to workflows by map-
ping a workflow situation into a job-shop scheduling problem. As a result, it
minimises the number of late jobs in workflow systems. Dong et al. [3] present
a framework for optimising the physical distribution of workflow schemes. The
approach focuses on compile-time analysis of workflow schemas and mapping
of parallel workflows into flowcharts. The total running time for processing
a workflow instance and maximum throughput have been considered in this
approach.

Modelling temporal constraints and time management for workflow sys-
tems recently started to be addressed. Little has been done on the time
management of process modelling and avoiding deadline violations. Event
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calculus axioms, timed workflow graphs and project management tools have
been purposed to represent the time structure [4–6]. [4] presents a tech-
nique for modelling, checking and enforcing temporal constraints by using the
Critical Path Method (CPM) in workflow processes containing conditionally
executed tasks. This ensures that the workflow execution avoids violating tem-
poral constraints. Two enactment schedules: ‘free schedules’ and ‘restricted
due-time schedules’ are purposed in [7]. In a free schedule, an agent may use
any amount of time between a minimum and a maximum time to finish the
task; in a restricted due-time one, an agent can only use up to the declared
maximum time. [7] also proposed to enhance the capabilities of workflow sys-
tems to specify quantitative temporal constraints on the duration of activities
and their synchronisation requirements. [5] introduced a new concept for time
management in workflow systems consisting of calculating internal deadlines
for all tasks within a workflow, checking time constraints and monitoring time
at run-time. PERT diagrams are used to support the calculation of internal
deadlines. Previous approaches in optimising workflow systems haven’t taken
enough consideration of process complexity, the interrelationships between
tasks and temporal constraints. To the authors’ knowledge, no previous ap-
proach considers the use of an enterprise model to optimise workflow systems.
We propose such an approach to improve the process, looking at the concepts
within each process, the interrelationships among tasks, and the management
of tasks cross-functionally. In the rest of the chapter, we discuss how processes
can be improved by using the enterprise modelling technique.

3 Enterprise Modelling

The use of Enterprise Modelling [8] in different applications shows that the
main issue of success is not only the Enterprise Model itself, but also the
management of business processes and requirements engineering [9]. An en-
terprise model describes the current and future state of an organization and
provides a way to describe different aspects of that organisation by using a
set of interrelated models, e.g. Goals Model, Business Rules Model, Concepts
Model, Business Process Model, Actors and Resources Model and Technical
Components and Requirements Model. We want to use the Enterprise Model
to examine the concepts related to workflow processes and the tasks they con-
sist of, and identify the possible cases in which processes can be improved.
A workflow models a business process and contains a collection of tasks, and
their order of execution follows the workflow routing. The enterprise model is
used in order to identify the interrelationships between tasks, and to exam-
ine the concepts related to each task within the workflow. Allen’s temporal
interval inference rules are applied to the workflow patterns, and the possible
workflow routings are identified.
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4 Identifying Possible Workflow Routings

Workflow specification addresses business requirements. It can be addressed
from a number of different perspectives [10, 11]. The control-flow perspective
describes tasks and their execution routings. The data perspective defines
business and processing data on the control-flow perspective. The resource
perspective addresses the roles part within the workflow. The operational
perspective describes the elementary actions executed by activities. The
control-flow perspective provides a big picture of workflow execution orders,
addressing what we believe identify the workflow specification’s effectiveness.
These workflow execution orders need to be addressed in order to support
business requirements from simple to complex. [12] describes possible work-
flow routing constructs from basic to complex to meet business requirements.

A time interval is an ordered pair of points with the first point less than the
second. In these workflow routings, [12] provides an insight into the relations
of different intervals. [13] describes a temporal representation that takes the
notion of a temporal interval as primitive and provides an inference algebra to
combine two different measures of the relation of two points. [13] also describes
the possible relations between unknown intervals. In the workflow routings,
described by [12], some relations between tasks, e.g. sequence routing, are al-
ready provided. We use the possible relations between the parallel activities
that can be identified by applying Allen’s 13 possible temporal interval infer-
ences [13] (see Fig. 1) to existing workflow routings. In addition, three types
of workflow patterns are identified: sequential routing, single task triggering
multiple tasks routing, multiple tasks triggering single task routing.

• Sequential Routing: Sequence, Exclusive choice, Simple merge, Arbitrary
cycles, Cancellation patterns. In a sequential routing (Fig. 2), task C is
always executed after task A. Both exclusive choice pattern and simple
merge pattern can be considered as sequential routing: task C (B) always
meets or will be after the previously executed task. In Multiple Merge, Syn-
chronizing Merge and Discriminator patterns, if only one task is chosen,
this workflow’s flow can be considered as a sequential routing [Routing 1].
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• Single task triggers multiple tasks: parallel split, multiple choice (see
Fig. 3)

A . . . . . . (<,m) → B ⇔ B . . . . . . (>,mi) → A
A . . . . . . (<,m) → C

Using Allen’s temporal interval, B. . .. . .(<,>, o, oi,m,mi,d,di, s, si,=
, f,fi) → C
If the relation between A and B, and A and C are already given, A may
meet or be before B and C. Then, by using Allen’s temporal interval in-
ference, the relation between its output B and C could be any of those 13
intervals above [Routing 2].

• Multiple tasks trigger single task: Synchronization (see Fig. 4)

B . . . . . . (<,m) → C ⇔ C . . . . . . (>,mi) → B
A . . . . . . (<,m) → C

Using Allen’s temporal intervals, A . . . . . . (<,>, o, oi,m,mi,d,di, s, si,=
, f,fi) → B
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If the relations between A and C, and B and C are already given, C may
meet or be after the execution of A and B and by using Allen’s temporal
interval inference, the relation between its inputs A and B could be any of the
13 intervals above [Routing 3].

5 Examining Concepts Related to the Processes
Within an Enterprise Model

The enterprise model is used for modelling the organisation and examining
concepts related to business processes. A high level enterprise metamodel
is defined with the following concepts: actor, resource, product, goal and
duration (Fig. 5). These will be examined within the three types of routings
identified above. One should note the ‘recursive’ link on the concept ‘process’.
This means that processes can consist of other processes. At a lower level
of decomposition processes will be reduced to tasks (making up an overall
process), which can also, using this metamodel, consist of subtasks.

• Actor: Actors are the people who perform the process. An actor can be a
single person or a group, who plays more than one roles.
An actor has three possibilities to work on a process [14]:
– Direct work: Actor works directly on the whole process.
– Delegation: A process can be delegated by an actor; this can be done by

delegating the whole process or dividing the process into sub-process
and eventually tasks to other actors (this is shown by the ‘recursive’
link to process in Fig. 5).

– Sub-processes: An actor can initialise another workflow model to fulfill
the task/process (again Fig. 5).

These cases are analysed with the existing workflow routings:
– Direct Work: For the sequential execution (see Fig. 6), if these tasks

are being performed by the same actor, task B can be executed after
task A finishes, and task C can be executed after task B finishes. Even

Product

Process

Goal

Resource

Actor

Duration

Fig. 5. Enterprise model
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A B C

Fig. 6. Sequential execution

A

B

C

and

A

B

and C

Fig. 7. (a) And-Split (b) And-Join

B

E

F

and

Actor 2

Actor 3

A

B

C

and

Actor 1

Actor 1

C

G

H

and

Actor 4

Actor 5

Fig. 8. (a) And-Split with same actors (b) (c) And-Split with different actors

if tasks A, B and C are being performed by different actors, these tasks
are still executed sequentially.
Task B and task C can be executed in parallel only if they are being
performed by different actors (see Fig. 7).

– Delegation: If an actor delegates a task, this task can be divided into
sub-tasks to other actors. If these sub-tasks are being performed by
different actors, then, task B and task C can be executed parallel. And
the sub-tasks of process B and C can be executed in parallel if they
are being performed by different actors (see Fig. 8).

• Resource: There are two types of resources: shared and private. Each
shared resource can be accessed by different tasks within a workflow or
from different workflows. A private resource can only be accessed by one
task. For each shared resource, we can use a locking mechanism to control
the concurrent access of it in two different modes: shared and mode. In
the shared mode, a task acquires a shared lock on a resource if this re-
source can be shared simultaneously by other tasks and the access does
not change the state of the resource-read only access. On the other hand,
in the exclusive mode, the task acquires an exclusive lock on the resource
and the access changes the state of the resource-read and write access [15].
These workflow routings are considered with three different resource shar-
ing cases, and thus, the possible relations between tasks are defined.
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– Read only access: Shared resources can be accessed by different tasks
simultaneously.

– Read and write access: Shared resources can only be accessed by a
single task at one time.

– Private resources can only be accessed by a specified task at one time.
1. Single task triggers single thread of tasks, such as sequential routing.

Task B is always executed after task A completes, and task C always
executed after task B completes.

A. . .(<,=) → B
B. . .(<,=) → C

If tasks A, B and C need to access the same shared resource R1, there
are no resource conflicts. If tasks A, B and C need to access different
private resources R1, R2 and R3, there are no resource conflicts.

2. Single task triggers multiple tasks, such as parallel split, multiple
choices.
If tasks A, B and C need to access different private resources R1, R2
and R3, R1 (A)∩R2 (B)∩R3 (C) = ∅, there are no resource conflicts.
The relation between B and C can be any of those 13 possible intervals
B. . .. . .(<,>, o, oi,m,mi, d, di, s, si,=, f, fi) → C. If tasks B and C
are resource dependent, R2 (B) ∩ R3 (C) �= ∅, and both tasks acquire
exclusive access (read and write accesses), then task B cannot execute
simultaneously with task C, in order to avoid the resource conflict, the
possible relations can only be B. . ...(<,>,m,mi) → C. If tasks B and
C are resource dependent, R2 (B)∩R3 (C) �= ∅, and both tasks acquire
access (read only access), then task B can be executed simultaneously
with task C; there is no resource conflict. The possible relations can be
B. . .. . .(<,>, o, oi,m,mi, d, di, s, si,=, f, fi) → C.

3. Multiple tasks trigger single task, such as synchronisation.
If tasks A, B and C need to access different private resources R1, R2 and
R3, R1 (A)∩R2 (B)∩R3 (C) = ∅, these are no resource conflicts. The
relation between A and B and be any of those 13 possible intervals,
A. . .. . .(<,>, o, oi,m,mi, d, di, s, si,=, f, fi) → B. If tasks A and B
are resource dependent, R1 (A) ∩ R2 (B) �= ∅, and both tasks acquire
exclusive access (read and write accesses), then task A cannot execute
simultaneously with task B, in order to avoid the resource conflict. The
possible relations can only be A. . ...(<,>,m,mi) → B. If tasks A and
B are resource dependent, R1 (A)∩R2 (B) �= ∅, and both tasks acquire
access (read only access), then task A can be executed simultaneously
with task B; there is no resource conflict. The possible relations can be
A. . .. . .(<,>, o, oi,m,mi, d, di, s, si,=, f, fi) → B.

• Goal. The goal is the objective of the task and is not affected by the
relationship with other tasks.

• Product. If the output of one task is not the input of another one, then
these two tasks can be executed parallel.
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If the output of one task is the input of another one, these two tasks can
only be executed sequentially.

• Time. The time of a task can be a time point or time interval [13]. Time
point is a precise point in time, e.g. “12 o’clock”. Time interval is a time
period, which could be fixed, fuzzy or indefinite [16].
– Fixed duration has exact beginning and end, for example, my semester

started on the 15th of January and finished on the 28th of March.
– Fuzzy duration, the duration is known (3–5 days) and it has an earliest

and latest start time and an earliest and latest finish time.
– Indefinite duration, the end of the interval cannot be determined or

estimated. By examining Allen’s interval algebra (the 13 basic rela-
tions), the rule is: If the finish time of one task is after the start
time of another one, then these tasks can be executed in parallel.
A. . ...(d,di, s, si, f,fi, o, oi,=) → B.

• Parallelism conditions. The parallelism heuristic is a way of optimising
the workflow [17]. We believe if the tasks can be executed in parallel, the
throughput time may be reduced. From the three workflow routings identi-
fied above, the possible relations between two tasks A and B could be any
of these 13 possible relations A. . .(<,>, o, oi,m,mi,d,di, s, si,=, f,fi) → B
that can be divided into two categories:
– Parallel execution relations A. . ...(o, oi,d,di, s, si, f,fi =) → B
– Sequential execution relations A. . ...(<,>,m, mi) → B

As mentioned above, a process can be quite complex. It may consist of
different actors performing different tasks; it may also need to access different
resources etc. An enterprise model can be used to model the organisation
and examine the five concepts related to processes/tasks. We use a reverse
reasoning method to address the conditions in which tasks can be executed
in parallel, and those in which tasks can be only executed sequentially. (See
Tables 1 and 2: X = different,

√
= same)

Table 1. Parallel execution relations

Actor Resource Goal Product Time

Shared Private

Read-only Read and write

O x
√

X
√

or x
√

x
√

Oi x
√

X
√

or x
√

x
√

D x
√

X
√

or x
√

x
√

Di x
√

X
√

or x
√

x
√

= x
√

X
√

or x
√

x
√

S x
√

X
√

or x
√

x
√

Si x
√

X
√

or x
√

x
√

F x
√

X
√

or x
√

x
√

fi x
√

X
√

or x
√

x
√
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Table 2. Sequential executions relations

Actor Resource Goal Product Time

Shared Private

Read-only Read and write

<
√ √ √ √

or x
√ √

x
>

√ √ √ √
or x

√ √
x

M
√ √ √ √

or x
√ √

x
mi

√ √ √ √
or x

√ √
x

From the above, to execute tasks in parallel, five conditions have to be
satisfied:

1. These tasks need to be performed by different actors.
2. These tasks can only acquire read-only access to the shared resource or

acquire access to different private resources.
3. These tasks can address the same or different goals.
4. The product of the task cannot be the input of other tasks.
5. The task finishing time is after the start time of other tasks.

6 General Rules of Process Improvement

By examining the concepts of the process/task with an enterprise model,
a set of rules is derived in which processes can be improved and tasks can be
executed in parallel:

1. If two or more tasks are being performed by different actors, then these
tasks can be executed in parallel.

2. If two or more tasks are being performed by the same actor, and the sub-
tasks of these have different actors, then these tasks can be executed in
parallel.

3. In a composite relationship, if sub-tasks are being performed by different
actors, then these sub-tasks can be executed in parallel.

4. If two or more tasks need to access different private resources, then these
tasks can be executed in parallel.

5. If two or more tasks acquire read only access to the same shared resources,
then these tasks can be executed in parallel.

6. If two or more tasks acquire read and write access to different shared
resources, then these tasks can be executed in parallel.

7. In a composite relationship, if sub-tasks acquire access to different private
resources, then these sub-tasks can be executed in parallel.

8. In a composite relationship, if sub-tasks acquire read only access to the
same shared resources, then these sub-tasks can be executed in parallel.
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9. In a composite relationship, if sub-tasks acquire read and write access to
different shared resources, then these sub-tasks can be executed in parallel.

10. If the output of one task is not the input of another task, then these tasks
can be executed in parallel.

11. If the output of a sub-task is not the input of another sub-task, then these
sub-tasks can be executed in parallel.

12. If the finish time of one task is after the start time of another one, then
these tasks can be executed in parallel.

7 Case Study on Electricity Utility System
Improvement Process

To illustrate the improvement rules identified above, an electricity installa-
tion process is used, which is based on the Electricity Supply Industry Case
Study [18]. It is the process of receiving customer applications and providing
electricity. In it there are four actors: customer, customer service department
(service administration), studies department (service provision) and construc-
tion department. Each task has a unique number so that it can be identified
and it has assigned an appropriate time constraint expressed in time units, i.e.
days (d). We assume that in some cases, tasks have a definite duration, e.g.
the duration of submitting an application is 1 day. In other cases, tasks have
an associated time-interval, e.g. the duration of investigating a site is between
1 and 3 days. This is due to the existence of different workflow instances:
different sites require different time to investigate, i.e. a local site takes 1 day
to investigate and a site in another city may take more than 1 day. Other
tasks may never be completed, e.g. customers may never notify the customer
service department with their decision. These have an infinite interval; dead-
lines are assigned, i.e. ∞ = 14 days. In this case study, we assume customers
accept the offer. Figure 9 shows the logical view of existing task executions in
this process. In order to illustrate the process improvement procedures, the
workflow model of existing execution process is divided into eight execution
patterns for analysis (Fig. 10).

Step 1. Pattern 1 follows sequential routing [Routing 1]. In order to opti-
mise the sequential tasks, the parallel execution rules identified in the previous
section are used to examine these tasks (see Table 3). The improved tasks are
shown in Fig. 11.

Step 2. Pattern 2 follows sequential routing [Routing 1]. In order to opti-
mise the sequential tasks, the parallel execution rules identified in the previous
section are used to examine these tasks (see Table 4). The improved tasks are
shown in Fig. 12.

Step 3. Pattern 3 is mapped into an OR-Split construct, which follows
sequential routing [Routing 1]. Task T15 triggers either task T16 or task T20,
which is dependent on the condition, the execution routing cannot be changed
(Fig. 13).
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Fig. 11. Pattern 1 optimisation

Table 4. Pattern 2 analysis

Pattern name Pattern 2

Execution routing Sequential routing

Enterprise model Actor Resource Product Goal Time

T9 Customer Service

order

Make

decision

Consider

offer

T9 . . . . . . (<, m) →
T10

T10 Customer Service

order

Accept offer Accept the

offer

T10 . . . . . . (<, m) →
T13

Task T13 Customer Payment Payment

received

Pay

contribution

T13 . . . . . . (<, m) →
T14

T14 Customer

service

dept

Service

order

Service order

for

installation

Create service

order for

installation

construction

T14 . . . . . . (<, m) →
T15

Interpretation: In the existing process, customer responsibles to execute task T9,
T10 and task T13; Since customer can and accept the offer after the consideration,
and he/she only need to pay contribution after accept the offer, Thus, task T9, T10
and task T13 need to executed in sequential order. Customer Service Dept is the
actor, who is responsible to execute task T14; it requires access to different resource
from task T13 and is not dependant on the output of task T13. Therefore, these two
tasks can be executed in parallel, parallel execution rules [Rule 1, 4, 10] are applied.
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Table 5. Pattern 4 analysis (a)

Pattern name Pattern 4

Execution routing Sequential Routing

Enterprise model Actor Resource Product Goal Time

T16 Studies dept Service

order

New

construction

details

Study new

construction

T16 . . . . . . (<, m) →
T17

Task

T17 Studies dept Service

order

Network

modification

requirement

Require net-

work modifi-

cation

T17 . . . . . . (<, m) →
T18

T18 Construction

Dept

Service

order

Network

modification

Modify net-

work

T18 . . . . . . (<, m) →
T19

T19 Construction

Dept

Service

order

Inform the

completion

Inform the

completion

Interpretation: Tasks T16, T17, T18 and T20 are require the same shared access,
the input of task T17 is depend on the output of task T16, the input of task T18 is
depend on the output of task T17, the input of T19 is depend on the output of T18,
which don’t satisfy with parallel executions rules.These tasks can only be executed
in sequential order.

Step 4. Pattern 4 follows sequential routing [Routing 1]. In order to opti-
mise the sequential tasks, the parallel execution rules identified in the previous
section are used to examine these tasks (see Table 5). The improved tasks are
shown in Fig. 14.

Step 5. Pattern 5 is mapped into an OR-Split construct, which follows
sequential routing [Routing 1]. Task T20 triggers either task T21 or task T22,
which is dependent on the condition, the execution routing can not be changed
(Fig. 15).

Step 6. Pattern 6 is mapped into an OR-Join construct, which follows
sequential routing [Routing 1]. Task T23 is triggered by either task T19 or
task T22, which is depend on the condition, the execution routing can not be
changed (Fig. 16).
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Fig. 15. Pattern 5 analysis

Step 7. Pattern 7 follows sequential routing [Routing 1]. In order to opti-
mise the sequential tasks, the parallel execution rules identified in the previous
section are used to examine these tasks (see Table 6). The improved tasks are
shown in Fig. 17.

Step 8. Pattern 8 is mapped into an OR-Split construct, which follows
sequential routing [Routing 1]. Task T26 triggers either task T27 or task
T28, which is dependent on the condition. The execution routing can not be
changed (Fig. 18).
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7.1 Execution Time Comparisons

Existing Process

The six possible task execution paths and the throughput time are shown
below (see Tables 7 and 8).

Due to the conditional execution of activities, the following time informa-
tion can be associated with the end event of activity: EBS , EWS , EBF , EWF ,
LBS , LWS , LBF , and LWF [19]:

– EBF The earliest point the process can finish when the shortest condition
and alternative path are chosen.

– EBS The earliest point the process can finish when the longest condition
and alternative path are chosen.

– EWF The earliest point when the longest condition and the shortest al-
ternative path are chosen.

– EWS The earliest point when the longest condition and the longest alter-
native path are chosen.

– LBF The latest point the process can finish when the shortest condition
and alternative path are chosen.

– LBS The latest point the process can finish when the longest condition
and alternative path are chosen.

– LWS The latest point when the longest condition and the longest alter-
native path are chosen.

– LWF The latest point when the longest condition and the shortest alter-
native path are chosen.
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Fig. 17. Pattern 7 optimisation
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Improved Process

The six possible task execution paths and the throughput time are shown
below (see Tables 9 and 10).

The following formulae represent how throughput time is improved in the
process.

f(n) represents the duration of task, n is the number of the task. If we
don’t know the duration variables of each task, the existing execution time
(in sequence) can be represented as,

Total timesequentialexecution =
n∑

k=1

f(k)

If two or more tasks are executed in parallel, the throughput time of these

tasks is max(
n

f(k))
k=1

Time saving =
n∑

k=1

f(k)−
n

max(f(k))
k=1

For x parallel tasks, if all tasks have same fixed minimum duration D, (the
time unit in this case study is 1 day). Time saving = Dx−D
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Table 10. Improved process execution time calculation

Improved process calculation (days)

Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

Best case 22 EWS 21 EWF 18 EBS 17 17 17 EBF

Worst case 61 LWS 58 LWF 55 LBS 52 53 50 LBF

8 Conclusions

This chapter has demonstrated how the enterprise model is used to model
an organisation, examined the concepts related to processes/tasks and iden-
tified possible cases in which processes can be improved and tasks executed
in parallel. We have illustrated the modelling of different workflow routings
within an enterprise model, and proposed a list of general rules for parallel
task execution. As parallel execution is a more efficient method in workflow
systems, these general rules can be implemented in a system, in order to find
the processes that can be executed in parallel. A case study on the Electricity
Supply Process is used to demonstrate how these execution rules are applied.
We showed how tasks are examined and applied by the enterprise model and
demonstrated the general rules in each step, calculating how the through-
put time is improved. In this chapter, we have established a framework to
optimise a single workflow. Future work concerns the optimisation of muti-
workflow systems where tasks may belong to different workflows and may be
performed by the same or different actors. We are intending to extend our
parallel execution rules to accommodate multi-workflow optimisation in order
to further prove their validity.
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6. Çiçekli, N.K. (1999) A Temporal Reasoning Approach to Model Workflow Ac-
tivities, LNCS 1649, Pinter, R. and Tsur, S. (eds.), NGITS’99, Israel

7. Bettini, C., Wang, X.S., Jajodia, S. (2002) Temporal Reasoning in Workflow
Systems, Distributed and Parallel Databases, 11(3), pp. 269–306

8. Persson, A., Stirna, J., (2001) EKD User Guide, Royal Institute of Technology
(KTH), Sweden

9. Kirikova, M., Bubenko, J.A. (1994) Enterprise Modelling: Improving the Quality
of Requirements Specifications, Information Research Seminar, IRIS 17, Finland

10. Van der Aalst, W.M.P. and van Hee, K.M. (2002) Workow Management: Models,
Methods, and Systems, MIT, Cambridge, MA

11. Jablonski, S. and Bussler, C. (1996) Workflow Management: Modeling Concepts,
Architecture, and Implementation, International Thomson Computer Press,
London

12. Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.
(2003) Workflow Patterns. Distributed and Parallel Databases, 14(3), pp. 5–51

13. Allen, J.F. (1983) Maintaining Knowledge about Temporal Intervals, Communi-
cations of the ACM, 26(11), pp. 832–843

14. Faustmann, G. (2000) Configuration for Adaptation-a Human-Centred Approach
to Flexible Workflow Enactment, Computer Supported Cooperative Work: The
Journal of Collaborative Computing, 9(3–4), pp. 413–434

15. Li, H., Yang, Y., (2004) Dynamic Checking of Temporal Constraints for Concur-
rent workflows, Sixth Asia-Pacific Web Conference (APWeb2004), pp. 804–813

16. Visser, U., Hubner, S. (2003) Temporal Representation and Reasoning for the
Semantic Web, Technical Report, TZI-Bericht Nr.28

17. Reijers, H.A. (2003) Design and Control of Workflow Processes: Business
Process Management for the service industry, Springer, Berlin Heidelberg
New York

18. Loucopoulos, P. (2006) A Series of Lectures on Enterprise System Modelling:
Designing for change, The University of Manchester, Manchester

19. Eder, J., Panagos, E. (2000) Managing Time in Workflow Systems. Fischer, L.
(ed.), Workflow Handbook 2001, Future Strategies INC. In Association with
Workflow Management Coalition 2000, ISBN 0-0703509-0-2, pp. 109–132



www.manaraa.com

Extending the Resource-Constrained Project
Scheduling Problem for Disruption
Management

Jürgen Kuster and Dietmar Jannach

Institute for Applied Informatics, University Klagenfurt, A-9020 Austria
jkuster@ifit.uni-klu.ac.at, dietmar@ifit.uni-klu.ac.at

Summary. This chapter describes how the Resource-Constrained Project Schedul-
ing Problem (RCPSP) can be used as a basis for comprehensive disruption manage-
ment, concerned with both rescheduling as well as potential process variations. It is
illustrated how the RCPSP can be extended by the possibility to represent alter-
native activities and how the respective constructs can be used to describe various
forms of typical interventions. Moreover, an approach for schedule optimization and
the resolution of the generalized problem is presented, based on the combination of
well-established methodologies and specific evolutionary operators. In an illustra-
tive example it is finally shown how the proposed framework can be applied for the
development of real-time decision support systems in the domain of airport ground
process management.1

1 Introduction

Uncertainty is an intrinsic and pervasive aspect of the real world [1]. When-
ever it unfolds, deviations from a predetermined plan are likely: A so-called
disruption occurs. Disruption management (DM, see [1, 2]) is concerned with
the resolution of respective problems and the continuous optimization of the
relationship between real and planned processes: As predetermined plans and
schedules are typically optimized according to some specific criterion, the
main aim is usually to get back on track in case of process disturbances and
to minimize the costs associated with its effects. For this purpose, an op-
timal combination of applicable interventions has to be selected from a set
of potential ones: Typically, both rescheduling as well as process variations
(i.e. dynamic switches from one process variant to another one) have to be
considered in the resolution of real-world problems.

1 This is a revised and extended version of the paper originally published in the
Proceedings of the 3rd IEEE Conference on Intelligent Systems, London, 2006.

J. Kuster and D. Jannach: Extending the Resource-Constrained Project Scheduling Problem

for Disruption Management, Studies in Computational Intelligence (SCI) 109, 43–61 (2008)
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However, the currently existing applications of disruption management
mainly focus on the rescheduling part of the problem: They are concerned
with the mere temporal shift of activities within a schedule. Even though par-
ticularly Zhu et al. [3] introduce basic aspects of structural flexibility when
considering mode alternations (i.e. the change of the durations and the amount
of resources required by a specific activity) as a potential form of intervention,
we claim that this is still not sufficient for the effective provision of decision
support in realistic problems. Apart from the temporal shift and the para-
metric modification of activities, the responsible decision maker might want
to insert or remove process steps, change their order or parallelize what has
been planned for serial execution (or vice versa).

Research on disruption management is strongly driven by operations re-
search and thus focusing on the application of mathematical programming.
Although the use of respective methods makes it possible to identify exact
optimal solutions, its main drawback compared to (only suboptimal) meta-
heuristic approaches is the significantly higher requirement of processing time:
Therefore, the respective methods can only be applied to relatively small
problems if real-time results are required [4].

The work presented herein is motivated by the findings of a study con-
ducted in collaboration with Deutsche Lufthansa AG, regarding the elemen-
tary requirements of DM-related decision support systems (DSS): We propose
a novel approach to disruption management, considering both rescheduling
and process variations as potential interventions relevant in real-time DSS.
For this purpose, the notion of alternative activities is introduced for the
formal description of process variations and metaheuristic optimization is ap-
plied to an accordingly extended version of the Resource-Constrained Project
Scheduling Problem (RCPSP). The remainder of this document is structured
as follows: Sect. 2 introduces a framework for the formal description of dis-
ruption management problems and potential process modifications. Section 3
shows how respective problems can be solved: Well-established methodologies
are combined with specific methods based on the concepts of evolutionary al-
gorithms. Section 4 provides an illustrative example for the application of the
proposed framework from the domain of airport ground process management
and gives an overview on the results of the conducted performance evaluations.
Finally, Sect. 5 summarizes the contributions of this chapter.

2 Modeling Process Interventions

This section describes how potential interventions can be described formally.
With a particular focus on dynamic process variations, the concept of alter-
native activities is introduced and used as the basis for an extension of the
RCPSP. It is also illustrated how the associated constructs can be applied for
the description of typical forms of intervention.
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2.1 Overview

Comprehensive disruption management has to consider both rescheduling and
process variations as potential forms of repair activities. Possibilities of the
former type are typically implicitly given by the definition of precedence re-
lations and associated resource constraints. Any conceptual framework for
schedule optimization can therefore form the basis for the identification of
optimal rescheduling interventions. However, as far as process variations are
concerned, additional modeling is usually required. Two different strategies
can be distinguished:

• External Description. In this approach potential variations are modeled
separated from the corresponding process: An intervention is described
through sets of activities and constraints, which have to be added to or
deleted from the originally planned process. Therefore, respective add and
delete lists represent the elementary constructs for this form of representa-
tion. Consider for example a simple network of two activities a and b which
are linked by a precedence constraint saying that a has to be finished at or
before the start of b. If we assume that the parallelization of the activities
represents a potential form of process variation, this intervention corre-
sponds to the removal of the single precedence relation. If alternatively it
shall be possible to insert an activity c between a and b, the respective in-
tervention corresponds to (1) the addition of c to the network and (2) the
replacement of the existing precedence relation by two constraints defining
that a needs to be executed before c which itself is executed before b.

• Internal Description. In this approach potential process variations are de-
scribed directly within the process model and the application of an in-
tervention is regarded as the switch from a previously chosen process
execution path to a valid alternative: Alternative activities represent a
convenient modeling construct for the formal description of different valid
process variants within a comprehensive process model. Considering the
example discussed above, the former option can be described by intro-
ducing a choice point into the reference (i.e. the default version of the)
process, where it is possible to select a or an alternative a1 for execution:
a1 differs from a in not being linked with b through a precedence relation.
For the latter option, another alternative a2 is inserted, which represents
the origin for the sequence a2 before c before b.

Upon changes in the process model, respective interventions have to be
updated accordingly if potential modifications are regarded separated from
the processes (as with an external form of description): This synchronization
represents a highly sensitive task since any mistake may cause inconsistencies
in the disruption management problem. If alternatively only one model is used
for the description of reference process and valid modification possibilities (as
with an internal form of description), a potential drawback consists in the
higher level of complexity associated with the description and maintenance
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of the process structure. In exchange, however, the difficulty of model syn-
chronization can be avoided as consistency is guaranteed implicitly. Since we
assume that (1) this represents a major advantage for realistic applications
with flexibly and dynamically changing processes, and that (2) the increased
modeling complexity can be efficiently handled through the provision of ap-
propriate (abstract) modeling constructs, we will focus on the latter form of
representation in the following.

2.2 Extending the RCPSP

The Resource-Constrained Project Scheduling Problem provides a well estab-
lished framework for the resolution of scheduling problems. In the regarded
context, we claim that it is perfectly suited for the resolution of the reschedul-
ing part of the problem, due to the following reasons:

• Defining an RCPSP is easy and intuitive. Based on abstract constructs
such as activities, resources, precedence constraints, etc. it is possible to
define entities and relationships on a conceptual level. Therefore, espe-
cially intelligibility and maintainability are significantly better than for
comprehensive mathematical models.

• Metaheuristic approaches can be used for optimization. Local search, tabu
search, genetic algorithms, ant colonies, etc. can be used to search for
solutions. By the use of such incremental search procedures the provision of
good results is even possible in real-time: This corresponds to the realistic
requirements of disruption management, where decisions must rather be
made in short time than in a (globally) optimal manner.

• The RCPSP has been and still is studied extensively. Research particularly
focuses on the (further) improvement of optimization algorithms and the
extension and generalization of the respective modeling concepts.

However, as far as options of switching between different process variants
are concerned, the RCPSP provides only little support. The only form in
which process variations are possible is the alternation of modes in the Multi-
mode RCPSP (MRCPSP, [5]): This generalization of the classical scheduling
problem makes it possible to dynamically consider changes in durations and in
the amounts of required resources. Moreover, Artigues et al. [6] and Elkhyari
et al. [7] recently presented their ideas of providing the RCPSP with ad-
ditional flexibility: The former focus on the dynamic insertion of activities,
considering each arrival of an unexpected activity a disruption. The latter
use explanations to handle over-constrained networks in dynamic scheduling
problems. As regards the concept of alternative activities, only Beck et al. [8]
have considered options of activity replacement in scheduling problems: Their
approach is based on the association of a Probability of Existence (PEX) with
any activity.

We herein introduce a method for describing alternative activities (as
discussed before) within the conceptual framework of the RCPSP. For this
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purpose, we define the Extended Resource-Constrained Project Scheduling
Problem x-RCPSP as a generalization of the classical problem. The basic
idea of the extension is a distinction between active and inactive elements, all
grouped and described in a comprehensive model, where only the former set
of elements is actually considered during the scheduling process. Thus, the
x-RCPSP is based on the introduction of an additional layer on top of the
original RCPSP: Depending on the current state of element activation, dif-
ferent instances of the classical problem can be generated from the respective
supersets. This way, the well-established methods which have been defined
for the resolution of the RCPSP [9] can be applied for the generation of valid
schedules. For the x-RCPSP, the aim of optimization is the identification of an
optimal activation state as well as the identification of an optimal sequence for
all active activities. Note that each change of the activation state corresponds
to the selection of an alternative process execution path.

The structure of the x-RCPSP can be described as follows. A project
(or process respectively) is defined by a set of potential activities A+ =
{0, 1, . . . , a, a + 1}. The first and the last element correspond to abstract
start and end activities having a duration of 0 and no resource requirements
associated. All active activities form a subset A ⊆ A+ which implies that all
inactive activities are contained in A+\A. The activities grouped in A0 ⊆ A+

form the so-called reference process: This subset defines the default activation
state and the preferred version of the process which is considered before a dis-
ruption occurs. The execution of the respective activities is based on a set of
renewable resource types R = {1, . . . , r}. For each type k, a constant amount
of uk units is available. As regards the description of activity dependencies,
the following constructs can be used:

• Duration Value. Each activity i has a duration di associated, describing
how long its execution lasts.

• Precedence Constraints. Activities can be ordered by use of precedence
constraints: The existence of pi,j states that activity i has to be finished at
or before the start of activity j. According to the distinction between active
and inactive activities, two different sets are used for grouping precedence
relations: P+ contains all potentially relevant constraints, whereas the
subset P ⊆ P+ groups only those pi,j for which both i and j are contained
in the set of active activities A.

• Resource Requirements. The relationship between activities and resource
types is defined through resource requirements: An activity i requires qi,k

units of type k throughout its execution. Q+ combines all potential depen-
dencies of elements in A+ on elements in R whereas Q only comprises those
requirements qi,k for which the associated activity i is currently active.

The set of active activities represents the most important of all subsets:
Whenever it changes, the sets of active precedence constraints and active
resource requirements have to be updated accordingly. Li et al. [10] have ar-
gued the necessity to consider mutual dependencies when regarding alternative
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resources: In accordance with their approach we base the definition of alter-
native activities on the subsequent constructs:

• Activity Substitutions X+. If xi,j is contained in this set, it represents a
legal from of modification to deactivate an activity i upon the activation
of activity j: X+ therefore describes elementary possibilities of deliberate
activity substitution. Note that the respective relationship is not neces-
sarily commutative since the option of replacing activity i with activity j
does not automatically imply the possibility to substitute j with i.

• Activity Dependencies M+. Changing the state of an activity might have
an impact on other activities. Therefore the set of activity dependencies
describes four types of binary and non-commutative relationships between
the elements of A+:
– The existence of an element m][

i,j in the set M+ indicates that activity
j ∈ A+ has to be activated upon the activation of i ∈ A+.

– The existence of an element m]|
i,j in the set M+ indicates that activity

j ∈ A+ has to be deactivated upon the activation of i ∈ A+.
– The existence of an element m|[

i,j in the set M+ indicates that activity
j ∈ A+ has to be activated upon the deactivation of i ∈ A+.

– The existence of an element m||
i,j in the set M+ indicates that activity

j ∈ A+ has to be deactivated upon the deactivation of i ∈ A+.

The x-RCPSP represents a generalization of the classical RCPSP: Any
instance of an x-RCPSP with X+ = M+ = ©/ can be converted into an
equivalent RCPSP. Correspondingly, the methodologies for the resolution of
the classical problem can be applied to our generalization, as soon as A is
stable. Furthermore, the Extended Resource-Constrained Project Scheduling
Problem generalizes the Multi-Mode RCPSP: It is possible to formulate an
x-RCPSP as an MRCPSP without losing any information if all of the following
properties hold:

xi,j∈ X+⇒ xj,i∈ X+ (1)
xi,j , xj,k∈ X+⇒ xi,k∈ X+ (2)

xi,j∈ X+, pi,k∈ P+ ⇒ pj,k∈ P+

xi,j∈ X+, pk,i∈ P+ ⇒ pk,j∈ P+ (3)

M+ = ©/ (4)

Statement 1 corresponds to the requirement of any potential activity substitu-
tion being commutative: The possibility of returning to an original activation
state must never be restricted to cyclic paths only. Statement 2 defines the
requirement that all indirectly reachable alternatives can also be reached in
a direct way: Switching from one alternative to another one must never re-
quire a detour. Statement 3 states that all exchangeable activities must have
the same set of predecessors and successors associated: They take exactly the
same position within the process. Statement 4 defines that the set of activity
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dependencies has to be empty: The number of elements contained in A is
constant as it is thus not possible to insert or remove activities.

2.3 Modeling Patterns

This section illustrates how the concept of alternative activities can be used
for the formal description of typical forms of process modification. In the fol-
lowing, mode alternation, resource alternation/capacity change, activity in-
sertion/removal, order change and serialization/parallelization are discussed.
For improved readability a simplified form of notation is used in the following:
i → j defines that pi,j ∈ P+, i > n x k defines that qi,k = n ∈ Q+, i ⇒ j
defines that xi,j ∈ X+, i ⇔ j defines that xi,j, xj,j ∈ X+, i][j defines that
m][

i,j ∈ M+, i]|j defines that m]|
i,j ∈ M+, i|[j defines that m|[

i,j ∈ M+ and
i||j defines that m||

i,j ∈ M+.

Mode Alternation

An execution mode can be defined as a fixed combination of duration and
resource requirements [5]. Activities, for which different execution modes are
available, are considered multi-mode. A mode alternation corresponds to the
switch from a previously chosen mode to another one. In the context of the
RCPSP, it is a particular characteristic of the MRCPSP to be able to optimize
the current mode selection along with the activity sequence. It has already
been discussed under which circumstances the x-RCPSP can be converted into
the more specific Multi-mode RCPSP (see Sect. 2). In this section, it is now
shown how potential mode alternations can be described by use of the specific
x-RCPSP constructs.

For this purpose, we consider an original network of three activities a, b
and c, forming a sequence of alphabetical order. The mode of activity b shall
be variable: Mode 1 corresponds to the original version, mode 2 to a slower but
less resource-intense version and mode 3, finally, to a faster version requiring
more resources. To describe the possibility of changing the execution mode
of an activity, we insert one alternative activity per option into A+: Instead
of having b in the network we thus distinguish b1, b2 and b3, all of which
are based on the original version of the activity: The associated precedence
relations are identical and differences merely concern durations and resource
requirements. The execution of a mode alternation corresponds to the sub-
stitution of an activity with another one. The respective possibilities (i.e. the
options of exchanging any pair of alternatives) are described in X+. For the
considered example, Table 1 compares the original with the accordingly mod-
ified network.

Resource Alternation and Capacity Change

Interventions regarding the dynamic modification of resource requirements
and availabilities can also be modeled within the framework of the x-RCPSP:
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Table 1. Mode alternation in the x-RCPSP

Original Modified network

A+ a, b, c a, b1, b2, b3, c
P+ a → b,

b → c
a → b1, a → b2, a → b3,
b1 → c, b2 → c, b3 → c

X+ ©/ b1 ⇔ b2, b1 ⇔ b3, b2 ⇔ b3

M+ ©/ ©/

Both the option of switching between alternative resources and the option of
modifying resource capacities can be defined based on the previously described
pattern of activity mode alternation.

1. The definition of alternative resources is first of all based on the introduc-
tion of an additional resource type. The possibility to execute an activity
on this or the originally intended resource is described through the intro-
duction of an additional activity mode. This way, full flexibility is provided
in the definition of alternatives: Effects on costs, durations and resource
requirements can be described per activity, for example. The drawback of
the additional modeling workload can be alleviated through the provision
of abstract modeling constructs.

2. The possibility of capacity change is described in a similar way: Instead
of changing uk directly, an additional (alternative) resource type is intro-
duced, representing the available standby units. For each activity which
may trigger a temporary extension of resource capacities an alternative
activity is introduced, defining the relationship between the process step
and the reserves. We claim that this approach represents an appropriate
method for the description of respective interventions: In realistic scenar-
ios capacity changes are typically motivated by and executed for specific
activities. Moreover, a high level of flexibility is provided through the
possibility to define dependencies per activity. Again, additional modeling
workload can be eliminated through the provision of appropriate modeling
constructs.

Activity Insertion/Removal

The dynamic insertion or removal of an activity represents an elementary form
of potential process variation. This section illustrates how this option can be
described by the use of the proposed constructs.

Again, we consider a simple sequence of three activities a, b and c as the
original network. The possibility of inserting an additional process step e be-
tween b and c (or removing it from there, respectively) shall be described. For
this purpose we distinguish two alternative versions of the optional activity’s
predecessor b : b1 is bound with the execution (i.e. activation) of e whereas
b2 is bound with the omission (i.e. deactivation) of e. As regards precedence
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Table 2. Activity insertion/removal in the x-RCPSP

Original Modified Network

A+ a, b, c a, b1, b2, c, e
P+ a → b,

b → c
a → b1, a → b2,

b1 → e, e → c, b2 → c
X+ ©/ b1 ⇔ b2

M+ ©/ b1][e, b2||e

constraints, e is executed after its predecessor b1 and before the start of all
successors of the original b. The insertion or removal of the optional activity
corresponds to the switch from one alternative predecessor to the other one.
The respective possibility is described through the insertion of appropriate
elements into X+. As regards the associated modifications in the set of active
activities, M+ is used to define respective dependencies: Activity e is acti-
vated whenever b1 is activated and deactivated whenever b2 is deactivated.
Correspondingly, Table 2 compares the original network to a modified version
in which it is possible to insert and remove activity e.

Order Change

Alternative activities can also form the basis for the description of the possi-
bility to change the execution order of two arbitrary process steps.

If we consider a sequence of four activities a, b, c and d and if the possibility
to exchange the positions of b and d shall be described, two versions of process
execution can be distinguished: In one version b is considered before, in the
other version b is considered after d. Correspondingly, each of the movable
process steps is replaced by two alternative activities: One of these alternatives
is positioned according to the original process, the other one is executed at
the position of the respective counterpart. In the considered example, b1(d1)
inherits all related precedence constraints from b(d) whereas b2(d2) is attached
to the predecessors and successors of d(b). The possibility to perform the order
change is defined in X+ and the dependencies between b and d are described
in M+: It has to be guaranteed that always the same alternatives are active for
both activities. Table 3 summarizes the differences between the original and
the modified network which provides the possibility to change the execution
order of b and d.

Serialization/Parallelization

Another common form of dynamic process variation is the serialization of
what has been planned for parallel or the parallelization of what has been
planned for serial execution. In the following it is described how this can be
formulated within the x-RCPSP.

We consider a sequence of six activities a to f . The possibility of paralleliz-
ing the subsequence b to d with the execution of e shall be described. For this
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Table 3. Order change in the x-RCPSP

Original Modified network

A+ a, b, c, d a, b1 , b2 , c, d1 , d2

P+ a → b,
b → c,
c → d

a → b1 , a → d2 ,
b1 → c, d2 → c,
c → d1 , c → b2

X+ ©/ b1 ⇔ b2 , d1 ⇔ d2

M+ ©/ b1 ][d1 , b1 ]|d2 ,
d1 ][b1 , d1 ]|b2 ,
b2 ][d2 , b2 ]|d1 ,
d2 ][b2 , d2 ]|b1

Table 4. Parallelization/serialization in the x-RCPSP

Original Modified Network

A+ a, b, c, d, e, f a, b, c, d, e1 , e2 , f
P+ a → b,

b → c,
c → d,
d → e,
e → f

a → b, a → e2,
b → c,
c → d,

d → e1, d → f ,
e1 → f, e2 → f

X+ ©/ e1 ⇔ e2

M+ ©/ ©/

purpose, it is sufficient to introduce an alternative for the first activity of the
latter sequence: e1 represents the option of serial execution whereas e2 rep-
resents the option of parallel execution. As regards precedence relations, e1

merely replaces the original activity e, whereas e2 is a successor of all prede-
cessors (a) of the first activity of the former sequence (b) and a predecessor of
all successors (f) of the original activity (e). Moreover, the last element of the
originally preceding subsequence (d) has to be linked directly with the succes-
sor/s of the originally succeeding subsequence (f). The possibility to switch
between serial and parallel execution is expressed through the definition of
a bidirectional substitution possibility in X+. No mutual dependencies have
to be defined. Table 4 compares the original with the accordingly modified
network.

3 Solving the Extended Model

This section describes how the extended version of the RCPSP can be solved
based on an evolutionary approach. The choice of a metaheuristic optimization
procedure has mainly been made for reasons of performance: Respective search
methods typically can provide good results for larger problems in shorter
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time than exact optimization approaches of mathematical programming [11].
This feature corresponds to the realistic requirements of real-time disruption
management.

Even though the main focus of this section is on the provision of decision
support in the area of process disruption management in appropriate time,
the possibilities of using the x-RCPSP for classical scheduling tasks such as
the generation and optimization of an initial schedule are also described. In the
following, first the notion of schedule and activity list is introduced. Then, the
generation of an initial solution is discussed before finally the evolutionary
approach for its incremental optimization is presented.

3.1 The Object of Optimization

The aim of disruption management is the identification of a set of interven-
tions, which can be applied to the currently existing schedule in response to
a disruption. In the context of the x-RCPSP it is thus necessary to optimize
the activation state along with the activity sequence.

Schedules represent the start and end point of optimization. Basically, a
schedule corresponds to a vector (β1 , β2 , . . . , βn), grouping the starting times
βi of all active activities. If we consider At the set of activities carried out at a
point in time t, a schedule is considered valid if all of the following statements
are true (cf. [9]):

βi ≥ 0 ∀i ∈ A (5)
βi + di ≤ βj ∀pi,j ∈ P (6)

Σi∈Atqi,k ≤ uk ∀k ∈ R,∀t (7)

Constraint 5 defines the domain for all starting times: No negative val-
ues are allowed. Constraint 6 makes sure that all precedence constraints are
respected: The difference between the starting times of two linked activities
must be equal to or greater than the duration of the preceding one. Constraint
7 finally defines that resource requirements must never exceed the available
capacities.

Due to the difficulty of operating directly on time values when doing op-
timization [4], it is a common approach to introduce an intermediary layer of
solution representation [9]: Respective forms of representation are composed
of easily describable and modifiable elements and can be transformed into a
corresponding schedule unambiguously. From the various potential candidates
(see [9] for an overview) we decided on the use of activity lists: λ corresponds
to a precedence feasible list sorting all active activities in the order they shall
be considered during the generation of a schedule. Respective schemes for the
conversion of λ to a final set of time values have been described by Kolisch
et al. [9] and Hindi et al. [4] for example: Their approaches are based on
the sequential insertion of the list’s activities at the earliest possible starting
time. Note that these Schedule Generation Schemes (SGS) always generate
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the same set of starting times for an activity list whereas one and the same
schedule might be associated with various different lists.

3.2 The Initial Solution

In the context of disruption management optimization aims at the identifica-
tion of the activity list which provides the best combination of final schedule
and associated interventions. As the proposed approach is based on incremen-
tal improvement, the starting point of optimization is an initial activity list
corresponding to a disrupted and/or yet unoptimized schedule. As regards the
generation of the respective λ0, basically two scenarios can be distinguished:
Either a currently existing schedule has to be considered and optimized (as
in disruption management) or no schedule is given and the reference process
represents the only starting point for optimization (as in classical schedule
optimization).

For disruption management, the conversion of the given schedule into an
initial activity list is straight-forward: Since the existing timetable is assumed
to respect all precedence requirements, it is sufficient to simply sort all ele-
ments i ∈ A+ which have actually been considered for execution and which
have not been started yet according to their starting times. If, alternatively,
no existing schedule is given, a valid and feasible sequence has to be generated
based on the reference process A0. Algorithm 1 summarizes the respective pro-
cedure (cf. [4]) which can be used for the transformation of any combination
of activity set and associated precedence constraints into a valid activity list
λ: For this purpose, all contained activities are added sequentially. In each
step, first the set of currently schedulable process steps A∗ is determined (line
2): It basically consists of all activities which have not been scheduled so far
and which do not have any or only previously considered predecessors. Note
that Pi is used to refer to the set of all preceding activities of process step
i. If A∗ is empty before all elements have been added to λ, the network de-
scribed by the processed sets is over-constrained and no valid activity list can
be identified: The method returns without any result in line 3. Otherwise, an
arbitrary element of A∗ is selected and added at the end of λ (line 4). After
all elements of the considered set of activities have been added, the method
returns the thereby created activity list.

Algorithm 1 Generate Activity List (A, P)

1: repeat
2: A∗ ← {i ∈ A|i /∈ λ ∧ (Pi = ©/ ∨ Pi ⊆ λ)}
3: ifA∗ = ©/ then return false
4: else add an arbitrary element of A∗ at the end of λ
5: until |λ| = |A|
6: return λ
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3.3 An Evolutionary Algorithm

In an evolutionary algorithm (EA), optimization is accomplished through the
continuous evolution of a population: Each generation comprises the fittest
individuals of the previous generation and their children, which are generated
through recombination and mutation. The main idea behind this concept is
that a combination of good solutions might result in or be at least close to
even better ones.

This section introduces an evolutionary algorithm for the optimization of
the x-RCPSP. First, some general remarks are made on initial population,
fitness function and selection scheme before afterwards specific versions of the
crossover and mutation operators are described, which take the existence of
alternative activities into account.

Initial Population, Fitness and Selection

The initial population consists of the initial solution and a certain amount
of fellow solutions: All of them are deduced directly from λ0 through the ap-
plication of the mutation operator (as discussed below). This first generation
therefore combines the option of not intervening at all with several possibilities
of applying exactly one form of intervention.

The assessment of the quality of a population and the comparison of solu-
tions is based on a so-called fitness function. In the context of the x-RCPSP,
this function evaluates activity lists through their conversion into one single
numeric value: Both the set of applied interventions as well as the implicitly
defined schedule are considered in light of the predetermined goals of sched-
ule optimization. Whereas most scheduling approaches for the resolution of
the RCPSP focus on the minimization of total process execution time (the
so-called makespan), disruption management is rather concerned with the im-
plications of earliness and tardiness, costs for interventions as well as the
difference from the original plan, for example.

As long as the current population does not fulfill the specified optimization
criteria, a new generation is deduced from the existing one. It is composed of
the fittest individuals and several children, the parents of which are selected
with a probability proportional to their relative fitness.

A Crossover Operator for the x-RCPSP

Handling the potentially distinct sets of activities contained within the activity
lists represents the main difficulty in the combination of two parent solutions.
A procedure based on the idea that one parent λa prescribes the interventions
to consider (i.e. the activation state of the child) whereas the other one λb

defines relative priorities of the contained process steps (i.e. the list order) is
summarized in the following.
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First it is checked whether the activity sets associated with both lists are
identical: If so, an RCPSP-related crossover operator can be applied to the lists
(see [4], for example). Otherwise, an x-RCPSP-specific procedure is executed.
The problem that one activity list shall prescribe the order of a distinct set
of activities is resolved by the use of a so called transition set T ⊆ X+. This
set basically describes how to convert the elements of λb into λa If Xa is the
set of substitutions which led from λ0 to λa, T combines all elements which
either exist only in Xa or only in Xb: Note that for a successful conversion
it has to be possible to invert all substitutions which are exclusive to the
latter set. Based on this transition set and the prescribed order of activities, a
new activity list is generated in an iterative procedure: The elements of λb are
either appended, replaced by potential substitutes or omitted (if this omission
is the result of any kind of relevant activity dependency).

A Mutation Operator for the x-RCPSP

As regards mutation, which is potentially applied to newly generated children
in order to avoid early convergence to only local optima, again a specific
version of the operator has to be introduced for the x-RCPSP. A procedure
considering also the possibility to perform process variations (i.e. to exchange
alternative activities) is briefly described in the following.

First, a random value is generated which defines whether rescheduling or
a process variation shall be applied: A fixed value θ defines respective proba-
bilities. In the former case, again an RCPSP-related method can be applied
for the mere rearrangement of the elements contained within the activity list.
In the latter case, an activity has to be replaced by an alternative: For this
purpose a potential substitution xi,j ∈ X+ is randomly selected for an ar-
bitrary element of λ: Activity i is deactivated and thus removed from the
activity list whereas activity j is activated and thus added to the activity list.
Of course all kind of dependencies have also to be considered. Note also that
the exchange operation has always to result in a precedence-feasible activity
list: An activity can only be inserted into the list after its last predecessor and
all associated successors have to be shifted to its right-hand side.

4 Exemplary Application

This section first provides an illustrative example for the application of the
previously presented framework to a realistic problem of real-time disruption
management: After the introduction of the turnaround process – the most
typical airport ground process – and three exemplary forms of potential inter-
vention, it is shown how the x-RCPSP can be used for its description and how
the evolutionary optimization approach can be applied. Finally, along with
possibilities of further improvements the results of turnaround-related as well
as more generic performance evaluations are discussed.
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4.1 Overview

The presented approach of disruption management can be applied to various
problems in various domains. Wherever it is necessary to provide comprehen-
sive decision support in the operative management of disruptions occurring
during the execution of time- and resource-dependent processes, the respective
concepts can be used as a basis for the proposal of interventions concerning
rescheduling and dynamic process variations. Project management (see [1,3]),
production planning (see [12, 13]), supply chain management (see [1, 14]),
logistics management (see [1]) or traffic flow management represent typical
examples of potential fields of application.

Another field, in which disruption management plays a particularly im-
portant role, is the domain of air traffic (see [2, 15–17]). Whereas existing
applications mainly focus on aircraft and crew scheduling, we will illustrate
how the proposed concepts can be applied for real-time disruption manage-
ment in the context of the turnaround process. This process basically com-
bines all activities carried out at an airport while an aircraft is on ground.
Instead of considering all actually relevant process steps, a simplified version
will be regarded, basically corresponding to the combination of core processes
as mentioned by Carr [18]: After the plane reaches its gate or stand posi-
tion, first the incoming passengers leave the aircraft. It is then fueled, cleaned
and catered simultaneously before the outgoing passengers enter the plane.
Finally, it leaves its position heading for the runway.

In the following, we will assume an instance of this process, in which a
disruption occurs during taxi-in, prior to deboarding. This way, a departure
delay is caused by the delay of the first activity and the implied shift of all
succeeding process steps. For the resolution of this problem we assume the
existence of three basic forms of potential process variation: First, an accel-
eration of deboarding can be reached through the assignment of additional
busses. Second, it is possible to shorten cleaning, if in exchange the cabin is
additionally inspected by the cabin crew prior to boarding. Third, fueling and
boarding can be parallelized if the fire brigade is present for supervision. As
regards potential options of rescheduling, respective possibilities are defined
in the process structure itself.

4.2 Modeling the Turnaround Process

Along with the reference process we define the possibilities of dynamic process
variations based on the patterns introduced in Sect. 2. A potential acceleration
of boarding through the assignment of additional resources corresponds to
the simple option of mode alternation. Shortening cleaning and inserting an
additional step of inspection corresponds to a mixture of mode alternation
and activity insertion. Finally, the possibility to execute boarding and fueling
in parallel corresponds to a specific version of activity parallelization. The
model resulting from the application of the respective patterns is summarized
in Table 5.
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Table 5. Formal description of the exemplary turnaround process

Set Content

R Bus, Firebrigade
A0 Start, Deb, Fue, Cat, Cle, Boa, End

A+ Start, Deb, DebBus, Fue, FuePar, Cat, Cle, CleRed, Ins, Boa, End
P+ Start → Deb, Start → DebBus, Deb → Fue, Deb → FuePar, Deb →

Cat, Deb → Cle, Deb → CleRed, DebBus → Fue, DebBus →
FuePar, DebBus → Cat, DebBus → Cle, DebBus → CleRed, Fue →
Boa, FuePar → End, Cat → Boa, Cle → Boa, CleRed → Ins, Ins →
Boa, Boa → End

Q+ Deb > 1 × Bus, DebBus > 2 × Bus, FuePar > 1 × Firebrigade

X+ Deb ⇔ DebBus, Fue ⇔ FuePar, Cle ⇔ CleRed

M+ CleRed][Ins, Cle||Ins

Airport Ground Process Disruption Management

The aim of disruption management is the minimization of the negative impact
associated with an occurring disruption: In the context of the turnaround
process, an exemplary goal might thus be the elimination of all pending delays.
As regards the initial solution, we assume that <Deb, Fue, Cle, Cat, Boa>
can be extracted as λ0. By mutating this activity list, a full population can be
generated as starting point of optimization: Examples of respective instances
are <Deb, Cle, Fue, Cat, Boa> and <Deb, Fue, CleRed, Ins, Cat, Boa>.
If none of the contained solutions fulfils a predetermined stopping criterion, a
new generation is deduced from the fittest individuals: Applying the crossover
operator on two parents λa = <DebBus, Fue, Cle, Cat, Boa> and λb =
<DebBus, Cat, CleRed, Ins, Boa, FuePar> generates the child activity list
<DebBus, Cat, Cle, Fue, Boa> by use of the transition set T = {CleRed ⇒
Cle, FuePar ⇒ Fue}. As soon as the goal of optimization is reached or a
certain amount of time has passed, the genetic algorithm stops and returns
a set of the best solutions found so far. The respective schedules implicitly
describe associated interventions.

4.3 Prototype Implementation

The presented approach has been implemented in a Java-based prototype. In
an exemplary setting, we considered p = 20 instances of the discussed version
of the turnaround process: We defined the durations of the elements in A+ to
be (0, 15, 7, 20, 20, 9, 14, 8, 1, 15, 0) and assumed the occurring disruption to
be a shift of all process deadlines from some originally planned ending time
to 0. Given the availability of 10 busses and 3 fire brigades, the unmodified
reference processes initially cause an overall delay of 1,150 min. Based on
the n = 3 provided modification possibilities, this value can be reduced to
984 min at most: Regarding dynamic process variations only, in the worst
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Fig. 1. Reduction of delay minutes in turnaround optimization

case 2n∗p = 260 schedules have to be evaluated for the identification of this
theoretical optimum. In our heuristic approach, we considered 60 generations
with 10 members each: By evaluating only 600 solutions, about 75% of the
full optimization potential could be tapped within 4 s on a standard PC with
1,800 MHz and 512 MB RAM. Figure 1 illustrates an exemplary reduction of
the delay minutes associated with the best known solution throughout the
generations.

4.4 Further Results and Improvements

In a more generic and comprehensive approach, we have evaluated the perfor-
mance of the proposed algorithms for randomly generated instances of disrup-
tion management problems. For this purpose we implemented both a program
for the parameterized generation of problem instances as well as an extensive
framework for the solution of DM problems in Java. Based on the former com-
ponent, 320 classified test cases have been generated: Particularly the number
of activities, precedence constraints and resource requirements has been var-
ied. By use of the DM framework we then wanted to find out how much of
a known optimization potential could be tapped within the first few seconds
of optimization: We chose the approach of comparing the best result known
after several seconds to the best result known after about half an hour of op-
timization, as even by use of the most powerful procedures it was not possible
to identify the exact optimum solution to most of the generated instances in
reasonable time. It could be observed that even for instances containing 100
activities more than 60% of the known potential could be tapped within only
five seconds and that the proposed operators thus represent a good starting
point for further improvements and evaluations. For further details regarding
the respective evaluation please see [19].

Our most recent results indicate that particularly local forms of reschedul-
ing can significantly improve the algorithm’s performance on DM problems:
Motivated by the idea of responding to a disruption right there where it takes
effect, problems are resolved on a local level in the approach named Local
Rescheduling (LRS): Rescheduling is regarded as an iterative process which
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starts with the consideration of a relatively small time window, which is iden-
tified based on the information associated with the occurring disruption. If
it is not possible to identify a satisfying solution within this time frame, it
is continuously extended until finally the entire search space is regarded. By
using this procedure we were able to tap even more than 65% of the known
optimization potential for all regarded classes of problem instances containing
1,000 activities. Further details on LRS can be found in [20].

5 Conclusions

This chapter described how both rescheduling and dynamic process variations
can be considered in a comprehensive approach to disruption management. In
various modeling patterns, the possibilities to describe potential forms of inter-
ventions based on the concept of alternative activities have been illustrated.
An extended version of the well-known RCPSP has been introduced and a
metaheuristic optimization approach based on an evolutionary algorithm has
been presented. In the last chapter, the application of the introduced concepts
to a real-world problem has been discussed based on the airport turnaround
process before finally some remarks on the general performance of the pro-
cedures presented in this chapter have been made: The proposed algorithms
are particularly powerful if they are combined with some technique of search
space reduction (based on Local Rescheduling approaches, for example).
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Summary. This chapter deals with the querying of possibilistic relational data-
bases, by means of generalized yes/no queries whose form is: “to what extent is it
possible and certain that the answer to Q satisfies property P”. Here, we consider
cardinality-based generalized yes/no queries (in this case, property P is about car-
dinality) for which a processing technique is proposed, which avoids computing all
the worlds attached to the possibilistic database.

1 Introduction

In this chapter, we consider relational databases where some attribute values
are imprecisely known and are represented as possibility distributions. Possi-
bility theory [1] provides an ordinal model for uncertainty where imprecision
is represented by means of a preference relation encoded by a total order over
the possible situations. This approach provides a unified framework for rep-
resenting precise values, as well as imprecise ones (regular sets) or vague ones
(fuzzy sets), and various null value situations [2].

Let us recall that an imprecise database can be seen as a set of regular
databases, called worlds, associated with a choice for each attribute value. A
compact, tractable calculus valid for a subset of the relational algebra has
been devised (see [3,4]). In this context, the result of a query is a possibilistic
relation whose interpretations correspond to more or less possible results,
equivalent to those which would have been obtained with a calculus applied
to the worlds of the possibilistic database. This achievement is interesting from
a methodological point of view, but the use of this type of result by a final user
can be somewhat delicate. So, it becomes convenient to define queries which
are more specialized to fit user needs. To meet this goal, possibilistic queries
(concept initially introduced by Abiteboul [5] in the framework of null values)
have been studied. Their generalized form is: “to what extent is it possible and
certain that the answer to Q satisfies property P”, and we have studied in [6]
the case where P is: “contains a given (specified) tuple t”. In this chapter, we
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are interested in cardinality-based generalized yes/no queries where property
P is: “contains at least (at most, exactly, . . .) q distinct elements” and we
tackle the algorithmic aspects of their evaluation. We will see that, contrary
to the previous case, we have to face complexity problems since a sequential
scan of the result of Q is not sufficient. To the best of our knowledge, there
does not exist any previous research work about this issue.

The structure of the chapter is the following. In Sect. 2, the notion of a
possibilistic relational database is introduced. Then, the data model requested
for a valid compact processing of algebraic queries is described in Sect. 3.
In Sect. 4, we propose a “trial and error” algorithm to process cardinality-
based generalized yes/no queries and we briefly discuss the complexity of the
approach proposed. Section 5 studies what would be the impact on the algo-
rithm/performances if the probabilistic model of uncertainty was used instead
of the possibilistic one. Finally, the conclusion summarizes the contributions
of the chapter and draws some lines for future works.

2 Possibilistic Databases and Worlds

In contrast to a regular database, a possibilistic relational database D may
have some attributes which take imprecise values. In such a case, a possibility
distribution is used to represent all the more or less acceptable candidates for
the attribute. In the rest of this chapter, only finite possibility distributions
are taken into account.

The first version of a possibilistic database model was introduced by Prade
in the mid 80s. From a semantic point of view, a possibilistic database D can
be interpreted as a set of usual databases (also called worlds), denoted by
rep(D), each of which being more or less possible (one of them is supposed
to correspond to the actual state of the universe modeled). This view estab-
lishes a semantic connection between possibilistic and regular databases. It is
particularly interesting since it offers a canonical approach to the definition
of queries addressed to possibilistic databases as will be seen later (Sect. 4).
Any world Wi is obtained by choosing a candidate value in each possibility
distribution appearing in D and its degree of possibility is the minimum of
those of the candidates taken (according to the axioms of possibility theory).

Example 1. Let us consider the possibilistic database D involving two rela-
tions: im and pl whose respective schemas are IM(#i, ap, date, place) and
PL(ap, lg, msp). Relation im describes satellite images of airplanes and each
image, identified by a number (#i) (Table 1), taken on a certain location
(place) a given day (date) is supposed to include a single (possibly ill-known,
due to the imprecision inherent in the recognition process) airplane (ap).
Relation pl gives the length (lg) and maximal speed (msp) of each airplane
and is a regular (precise) relation. With the extension of im: four worlds can
be drawn, since there are two candidates for date (resp. ap) in the first (resp.
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Table 1. Image Relation

im #i ap Date Place
i1 a1 {1/d1 + 0.7/d3} p1

i3 {1/a3 + 0.3/a4} d1 p2

second) tuple of im. Each of these worlds involves relation pl which has only
precise values and one of the four regular relations issued from the possibilistic
relation im.

3 An Extended Possibilistic Data Model

3.1 Objective

As mentioned before, a calculus based on the processing of the query Q against
worlds is intractable and a compact approach to the calculus of the answer to
Q must be found out. It is then necessary to be provided with both a data
model and operations which have good properties (a) the data model must
be closed for the considered operations, and (b) any query (applying to the
possibilistic database D) must be processed in a compact way. In addition, its
result must be a compact representation of the results of this query if it were
applied to all the interpretations (worlds) drawn from D, i.e., rep(Qc(D)) =
Q(rep(D)), where rep(D) denotes the set of worlds associated with D and Qc
stands for the query obtained by replacing the operators of Q by their compact
versions. This property characterizes data models called strong representation
systems.

It turns out [3] that the initial relational possibilistic model cannot comply
with this property in at least two respects (notably for the selection) (a) the
recovery of “missing tuples”, and (b) the accounting for dependencies between
candidate values. An adapted data model, which has been defined in [3], is
briefly described hereafter.

3.2 Representing Possibly Missing Tuples

Because some operations (e.g. selection) filter candidate values, there is a need
at the compact level for expressing that some tuples can have no representative
in some worlds. A simple solution is to introduce a new attribute, denoted by N
(valued in [0, 1]), which states whether or not it is legal to build worlds where
no representative of the corresponding tuple is present, and, if so, the influence
of this choice in terms of degree of possibility. The value of N associated with
a tuple t expresses the certainty of the presence of a representative of t in any
world. A tuple is denoted by a pair N/t where N equals 1 for tuples of initial
possibilistic relations as well as when no candidate value has been discarded.
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Table 2. Possibilistic relation ‘im’

im #i ap Date Place
i1 B-727 d1 p1

i2 ATR-72 d1 p2

i3 {1/B-727 + 0.7/ATR-42} d2 p4

i4 {1/B-727 + 1/B-747} d2 p2

Table 3. Performing Selection on ‘im’

res #i ap Date Place N
i1 B-727 d1 p1 1
i3 B-727 d2 p4 0.3
i4 B-727 d2 p2 0

Example 2. Let us consider the following extension of the possibilistic relation
im (Table 2):

The selection based on the condition “ap = B-727”(Table 3) leads to
discard the candidates which are different from this desired value. Thanks to
the introduction of attribute N, the result of the selection is:

In the second tuple N is equal to 0.3, i.e, 1 minus the possibility degree
attached to the most possible alternative that has been discarded. From this
result, it is possible to derive the interpretation made of the single tuple <i1,
B-727, d1, p1> whose degree of possibility is: min(1, 1− 0.3, 1− 0) = 0.7.

3.3 Multiple Attribute Possibility Distributions

Another aspect of the model is related to the fact that it is sometimes neces-
sary to express dependencies between candidate values coming from different
attributes in a same tuple. This requires that the model incorporates attribute
values defined as possibility distributions over several domains. This is feasible
in the relational framework thanks to the concept of a nested relation. In such
relations, exclusive candidates are represented as weighted tuples. Therefore,
level-one relations keep their conjunctive meaning, whereas nested relations
have a disjunctive interpretation.

Example 3. Let us consider the following intermediate relation int-r (Table 4)
involving the nested attribute X(date, place):

This relation is associated with 12 worlds since the first tuple admits three
interpretations, the second and third ones have two interpretations among
which ©/ (no representative).

In order to meet the objective of a compact processing of algebraic queries,
the operators must be adapted so as to accept compact relations both as
inputs and outputs. It turns out that only operations such that an input
tuple participates in the production of at most one element of the result, can
be expected to admit a compact version. As a consequence, the intersection,
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Table 4. Intermediate Relation ‘int-r’

int-r #i ap X N
date place

i1 B-727 {1/<d1, p1>+0.7/<d1, p2>
+0.4/<d3, p2>}

1

i3 B-727 <d1, p2> 0.3
i4 {0.4/B-737} {0.3/d3, p2>} 0

the difference and the Cartesian product (then the join in the general case) are
discarded and the four acceptable operators are: the selection, the projection,
the fk-join (a specific join) and the union.

3.4 A brief Survey of the Four Operations

Considering the specific objective of this chapter, we will not give a detailed
presentation of the operators. We limit ourselves to a brief introduction and
the operations are then illustrated by an example. The interested reader may
refer to [3, 4] for more details.

The three aspects of the selection are: the removal of unsatisfactory can-
didate values, the computation of the degree of certainty attached to each
output tuple and the introduction of appropriate nested relations in the out-
put relation if needed.

The role of the projection in the regular case is to remove undesired
attributes. Here, the projection must (1) keep the duplicates in level-one
relations (this is justified in [3]), (2) suppress nested relations if necessary,
(3) update the possibility degrees.

Beyond selections and projections, two binary operations can be processed
in a compact fashion: fk-join and union. The fk-join allows for the composition
of a possibilistic relation r of schema R(W, Z), where W and Z may take
imprecise values, and a regular relation s whose schema is S(W, Y) where the
functional dependency W → Y holds. It consists in completing tuples of r by
adding the image of the W-component. By definition, this leads to a resulting
relation involving the nested relation X(W, Y), which “connects” the pairs of
candidates over W and Y.

Last, the union of two independent relations whose schemas are compatible
keeps all the tuples issued from the two input relations without any duplicate
removal.

Example 4. Let us consider the possibilistic database composed of the rela-
tions im1(IM), im2(IM) and pl(PL) (Tables 5–8) whose respective schemas
are the ones introduced in Example 1. The relations im1 and im2 are as-
sumed to contain images of airplanes taken by two distinct satellites. Let
us consider the query looking for the existence of images of airplanes whose
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Table 5. Relation-Plane “Pl”

pl ap lg msp
a1 20 1,000
a2 25 800
a4 20 1,200
a5 20 1,000

Table 6. Relation Image “Im1”

im1 #i Ap Date Place N
i1 a3 {1/d1 + 0.7/d3} p1 1
i2 {1/a2 + 0.7/a1} d1 p2 1

Table 7. Relation Image “Im2”

im2 #i ap Date Place N
i3 {1/a4 + 1/a5} {0.6/d4 + 1/d1} p3 1

Table 8. Query-Q Results

res #i X Date Place N
ap lg msp

i2 {0.7/<a1, 20, 1, 000>} d1 p2 0
i3 {1/<a4, 20, 1, 200> + 1/

<a5, 20, 1, 000>}
{1/d1} p3 0.4

maximal speed is over 900 km h−1 and taken by either of the two satellites
at a date different from d3 and d4, which corresponds to the algebraic query
Q: fk-join(union(select(im1, date /∈ {d3, d4}), select(im2, date /∈ {d3, d4})),
select(pl, msp > 900), {ap}, {ap}). With the extensions:

We obtain the resulting relation res hereafter:
which is associated with six worlds.

4 Cardinality-Based Queries

4.1 Introducing a Post-Processing

On the basis of the definitions of the algebraic operators given above, a query
can be processed in a tractable way since operations are performed in a com-
pact fashion. However, one may wonder about the usability of the result de-
livered by such a query, i.e., of a compact relation as such. We think that a
convenient direction is to provide users with queries which are close to their
needs and whose results are easily interpretable, and then to call on (em-
bedded) algebraic queries. Hereafter, we are interested in possibilistic queries
whose most general form is: “to what extent is it possible and certain that
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the answer to Q satisfies property P” and which are an extension of yes/no
queries. These latter are of the form: “is it true that tuple t belongs to the
answer to Q?” and were studied by Abiteboul [5] in the framework of null
values. In this case the answer is uncertain and it can be yes, no or maybe
(instead of yes or no). Possibilistic queries have been studied in [6] in the
case where P is: “contains a given (specified) tuple t”. In this chapter, we are
interested in cardinality-based generalized yes/no queries where property P
is: “contains at least (at most, exactly, . . ..) q distinct elements”, the answer
to these queries being the possibility and the necessity (certainty) that the
answer to Q contains at least (at most, exactly, . . .) q distinct elements. The
evaluation of such queries is based on a two-step mechanism:

1. A compact processing of the associated algebraic query, which builds a
compact relation res according to the procedure depicted in the preceding
section.

2. A post-processing producing the final answer (i.e., the answer to the
cardinality-based query, in the form of a pair of degrees Π/N).

4.2 Problem Raised by Cardinality-Based Queries

The post-processing of the compact result of Q entails determining the pos-
sibility attached to worlds involving a certain number of elements in order
to compute the degrees Π/N of the event “to what extent is it possible and
certain that the answer to Q contains at least (at most, exactly, . . .) q distinct
elements?”. In fact, if we are able to compute the possibility in each case (“at
least”, “at most”, “exactly”, . . .), we can also compute the necessity. Indeed,
the necessity that the answer to Q contains at least (respectively at most) q
distinct elements is 1 – the possibility that the answer to Q contains less than
(respectively more than) q distinct elements. Moreover, the necessity that the
answer to Q contains exactly q distinct elements is 1 – the possibility that the
answer to Q contains less than or more than q distinct elements.

The problem is that some tuples of the resulting relation res can produce
representatives which are duplicates. According to the case considered (“at
least”, “at most” or “exactly”), duplicates do not have the same impact. It
turns out that, in all cases, the procedure attached to the post-processing
must rely on a “trial and error” technique. Let us illustrate this through two
examples.

Example 5. Let us consider the following relation res = {<{1/a1 +
0.6/a2}, b>/0.3, <a1, b>/1} which is assumed to be the result of the
compact processing of an algebraic query Q. The degree of possibility that
the answer to Q contains at least two different tuples cannot be obtained by
taking the most possible representative of the two tuples of res because they
are identical (<a1, b>). Thus, the representatives which are duplicates must
be identified in order to compute the exact cardinality.
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Table 9. Compact Processing of Query Q

res A B N
a2 {1/b3 + 0.9/b2} 1
a2 b3 1
{1/a2 + 0.3/a1} b3 0.3
{0.9/a4 + 0.8/a5} {0.5/b1} 0

Example 6. Let us consider the following relation res (Table 9) which is
assumed to be the result of the compact processing of an algebraic query Q:
and the cardinality-based query: “to what extent is it possible and certain
that the answer to Q has at most 1 element?”.

One may think that the possibility degree delivered to the user would be
0 because each world contains at least a representative of the two tuples with
N = 1. But in fact, there may be some duplicates among these two tuples
(it is indeed the case here), that is why the procedure attached to the post-
processing must rely on a “trial and error” technique. The question is whether
the procedure should only concern the tuples with N = 1 or all the tuples
somewhat certain. The world made only of the most possible representatives
of the first two tuples has the possibility degree min(1, 1, 1−0.3, 1−0) = 0.7
while the one containing also the best representative of the third tuple (which
is (a2, b3)) has the possibility degree min(1, 1, 1, 1 − 0) = 1. This latter
world contains one tuple because the three representatives are duplicates and
it is more possible than the first one. The “trial and error” procedure should
therefore consider all the tuples somewhat certain.

The case “exactly” is similar to that of “at least”. The same kind of rea-
soning can be done for the other cases (“less than”, “more than”).

4.3 The Algorithm

The algorithm proposed here is based on a “trial and error” technique. It
aims at delivering the possibility degree π of the most satisfactory world with
respect to the desired cardinality. Such an algorithm calculates a series of
vectors V = (x1, x2, . . . , xn) (n being the number of tuples in relation res)
where each component xi takes its values in a finite set Ei. Ultimately, it aims
at finding the best solution, i.e., the best vector V.

A solution is a vector V which represents a world (a candidate regular
relation for the possibilistic relation res resulting from the compact evaluation
of Q). Its dimension is the number n of tuples in relation res. The components
of vector V are precise tuples (the ith position of V is the representative
tuple produced by the ith tuple of relation res). Some positions of V may
be empty, which occurs when the value N in relation res is different from 1
(the corresponding tuple may have no representative in a given world). The
algorithm and the corresponding data structures are the following:
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Procedure OptimalSolution(i integer)
begin
compute Ei;
for xj in Ei do
if satisfactory(xj) then
memorize(xj);
if solutionFound then

if better then keepSolution endif
else if stillPossible then

optimalSolution(i+1) enfif
endif;
undo(xj);

endif;
endfor;

end;

Ei: list of the precise tuples corresponding to the possible representatives of
the ith tuple from res (including ©/ if N < 1);

Πi: list of the respective possibility degrees πj of each xj in Ei (1 – N if xj is
©/);

V: represents a world of res (a regular relation that is a possible answer to Q);
Pos: vector of the same dimension as V, it contains the possibility degrees of

the tuples of V (the possibility degree associated to V being the minimum
over Pos);

Card: the cardinality of vector V (the number of tuples in V different from ©/);
BestΠ: the possibility degree of the most possible world found until then;
satisfactory(xj): πj > BestΠ (it is possible for the current solution to be

better than the best one already found only if the possibility of the current
candidate tuple is over BestΠ, since the overall possibility degree of a world
is computed by means of a minimum, cf. keepSolution below);

memorize(xj): V[i] ← xj; Pos[i] ← πj;
b ← (xj �= ©/ and the same tuple is not already in V (it does not exist k in

[1..i-1] such that V[k] = xj));
if b then Card ← Card + 1;

solutionFound:
(i = n) and Card ≥ q for the case “at least”,
(i = n) and Card > q for the case “more than”,
(i = n) and Card ≤ q for the case “at most”,
(i = n) and Card < q for the case “less than”,
(i = n) and Card = q for the case “exactly”;

better: mink in[1, n] Pos[k] > BestΠ;

keepSolution: BestΠ ← mink in[1, n] Pos[k];

stillPossible: Card + (n − i) ≥ q for the case “at least” (there is no hope to
construct a solution containing at least q tuples from the current vector if
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its cardinality is not at least equal to q minus the number of tuples that
can still be chosen). Analogous conditions related to other comparators
are straightforward.

undo(xj): Pos[i] ← 0; if b then Card ← Card− 1.

By construction, this algorithm checks all the possible worlds of res. Since
the pruning conditions discard the worlds that are either not satisfactory or
whose possibility degree is lower than the optimal already found, one has the
guarantee to obtain the best world in the end.

The necessity degree which is the answer to the query “to what extent is it
certain that the answer to Q has at least (resp. at most, exactly, . . .) q distinct
elements?” is 1 minus the possibility degree obtained by the algorithm above
for the query “to what extent is it possible that the answer to Q has less than
(resp. more than, less than or more than, . . .) q distinct elements?”.

Remarks. In order to reduce the number of the worlds to be computed, some
improvements can be brought to the algorithm above:

1. When BestΠ is equal to 1 the processing can be stopped.
2. The sets Ei can be ranked in decreasing order on the possibility degrees.

In that case, once an unsatisfactory xj is found, the loop can be stopped
(because the following x-values would be unsatisfactory too). However,
this ordering does not prevent from computing the whole worlds in some
cases (when the only satisfying world is the last one built).

3. In the cases “at least”, “more than” and “exactly”, we can take advan-
tage of the number n of tuples in relation res. For instance, if the user is
interested in 5 responses (q = 5) while the relation res contains only three
tuples, the result is obviously 0.

4. For the cases “at most” and “less than”, the algorithm can be evaluated
only on the tuples somewhat certain. Let t be an imprecise tuple whose
necessity degree is 0, if we add a representative of t to the current solution,
the possibility degree associated to the solution can only decrease (or stay
the same). Since the criterion is of the form at most or less than, it is thus
a better idea not to take a representative of t, this choice being possible
at degree 1. Furthermore, if relation res contains at most (resp. less than)
q tuples with N > 0, the procedure based on a “trial and error” technique
is not needed any more and the result is Π = 1 (because the possibility
distributions are normalized for tuples somewhat certain).

5. In some cases, it is not necessary to compute the degrees Π and N but only
one of them: if the possibility degree is less than 1, the necessity degree
will be 0 (due to the property Π(A) < 1 ⇒ N(A) = 0), and vice versa, if
the necessity degree is more than 0, Π will be equal to 1.

4.4 Example

This example is intended for illustrating the functioning of the algorithm. Let
us consider the possibilistic relation r (Table 10): and the cardinality-based
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Table 10. Possibilistic Relation R

R A B
a2 {1/b2 + 0.9/b3}
a2 {1/b3 + 0.3/b4}
a3 {1/b2 + 0.4/b4}
{1/a2 + 0.5/a1 + 0.6/a3} b1

{0.8/a4 + 0.6/a5 + 1/a3} {0.7/b1}

Table 11. Selection Results on R

res A B N
a2 {1/b2 + 0.9/b3} 1
a2 {1/b3 + 0.3/b4} 1
{1/a2 + 0.5/a1} b1 0.4
{0.8/a4 + 0.6/a5} {0.7/b1} 0

query: “to what extent is it possible and certain that the answer to the query
Q = select(r, A �= a3) (Table 11) has at most two distinct elements?”

The evaluation of query Q leads to the resulting relation res:
The corresponding sets Ei and Πi (only of the tuples somewhat certain,

cf. Remark 4), after ranking them in decreasing order on the possibility de-
grees, are:

E1 = (<a2, b2>, <a2, b3>) Π1 = (1, 0.9)
E2 = (<a2, b3>, <a2, b4>) Π2 = (1, 0.3)
E3 = (<a2, b1>, ©/, <a1, b1>) Π3 = (1, 0.6, 0.5)

To illustrate how the algorithm works on this example, we use a tree
representation. The tree is split into two parts for space reasons.

(<a2, b2>, 1)
Card=1 

(<a2, b3>, 1)
Card=2

(<a2, b4>, 0.3)
satisfactory= false 

(<a2, b1>, 1)
Card=3

(<a1, b1>, 0.5)
satisfactory= false

(∅, 0.6)
Card=2

BestΠ =0.6
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(<a2, b3>, 0.9)
Card=1

(<a2, b3>, 1)
Card=1

(<a2, b1>, 1)
Card=2

(∅, 0.6)
satisfactory= false

BestΠ =0.9

(<a2, b4>, 0.3)
satisfactory= false

In the first part of the tree and for the node (<a2, b4>, 0.3), satisfactory
(<a2, b4>) is false since at that point of the computations BestΠ = 0.6 while
the solution in that branch could not be more possible than 0.3, we therefore
leave the loop and come back to the calling context (the same reasoning can
be done for the node (<a2, b4>, 0.3) of the second part of the tree.

For the node (©/, 0.6) of the second part of the tree, satisfactory (©/) is
false since at that point of the computations BestΠ = 0.9. Given that the
possibility degrees πj are ranked in decreasing order, the following children of
the parent of (©/, 0.6) are not generated.

The resulting possibility degree for the cardinality-based query above is
0.9, and the resulting necessity degree is therefore 0 (since Π < 1). In this
example, we compute only five worlds instead of the 36 worlds of relation res
thanks to the pruning conditions above.

4.5 About Performances

As for any of the algorithms of this family, the maximal complexity of the
procedure (of Sect. 4.3) is exponential. Let us consider a relation res containing
n tuples and m imprecise attributes. Let us assume that there are p candidate
values per possibility distribution, and that, for each tuple, N equals 1. The
time complexity in terms of recursive calls (which also corresponds to the
number of computed worlds) is in O(pm∗n), but one may expect to drastically
reduce the number of computed worlds thanks to the pruning conditions.

Indeed, the algorithm described in Sect. 4.3 includes two pruning con-
ditions: one based on the optimality of the solution (satisfactory(xj)), the
other on the cardinality of the current world under construction (stillPos-
sible). Clearly, the first condition will be very effective if a highly possible
satisfactory world is encountered early. If it is not the case (the extreme sit-
uation being that the final possibility degree equals zero), only the second
pruning condition can have an effect and avoid constructing all the possi-
ble worlds of relation res. Let us notice, however, that the number of worlds
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attached to res is much smaller than the number of worlds attached to the
initial possibilistic database, due to the reduction obtained by means of the
compact evaluation of query Q. Anyway, in certain cases (when the cardinal-
ity of res is too important), due to the combinatorial nature of the algorithm,
even when both pruning conditions can be used together, the complexity will
still be too high to reach acceptable performances. An idea could then con-
sist in computing only an approximate answer, i.e., an underestimation of the
actual value of Π and N). For a criterion of the form “at least q”, this could
be done by means of a greedy algorithm scanning the resulting relation (pre-
viously ordered increasingly with respect to the possibility degree associated
with each imprecise tuple) and choosing, for each imprecise tuple of res, the
most possible candidate corresponding to a tuple not already chosen. Even
when relation res has a “reasonable” size, such a greedy algorithm could be
used as a pre-processing step in order to obtain – in a non-expensive way –
a Π-value that could be used to initialize the variable BestΠ before running
the trial and error procedure, so as to make the optimality-based pruning
condition more effective.

5 Probabilistic Databases and Cardinality-based
Generalized Yes/no Queries

5.1 Processing the Algebraic Query

A probabilistic database can also be interpreted as a weighted disjunctive
set of worlds. Each world is obtained by choosing one among all the can-
didates pertaining to each probability distribution, and is associated with a
degree corresponding to the product of the degrees tied to the candidate values
appearing in it.

Concerning the database model, it has been shown in [7] that the model
described in Sect. 3 constitutes also a strong representation system in a prob-
abilistic framework, for the same set of algebraic operators (selection, pro-
jection, fk-join and union). The only difference with the possibilistic case is
that we do not need an extra attribute N in order to have available the prob-
ability for an imprecise tuple to have a representative in any world. Indeed,
in the probabilistic case, we know that some candidates have been discarded
from a distribution when the sum of the degrees in this distribution is less
than 1. In the case where a single distribution is considered, the probability
attached to the situation where the tuple has no representative is equal to 1
minus the sum of the degrees attached to the remaining elements. Since the
knowledge necessary to this calculus is available in the tuple, there is no need
to explicitly store the degree itself in the relation. However, in order to have
a generic model, attribute N can be kept even if the framework considered is
the probabilistic one.
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As to the processing of the algebraic query underlying a cardinality-based
generalized yes/no query, it differs only slightly from the possibilistic case.
Basically, what changes is that in the definitions of the operators, the mini-
mum is replaced by the product and the maximum by the sum.

5.2 About the Post-Processing

Concerning the post-processing step, the reasoning remains in the main the
same. It is practically a simple adaptation of that described in Sect. 4.3, the
only change concerns the way the degrees themselves are computed.

As far as the pruning conditions are concerned, it has to be checked
whether they still hold or not. The condition that concerns optimality
(satisfactory(xj)) does not hold any more in the probabilistic case: one
cannot compare any more the probability of the current solution with that
of the optimal solution found so far, since one has to compute all the satis-
factory worlds with respect to the desired cardinality in order to sum their
probability degrees (this is due to the additive nature of the probabilistic
framework). The second pruning condition concerns the cardinality of the
current solution. This condition still holds since it is completely independent
of the degrees (and therefore, of their semantics).

The complexity of this procedure in the probabilistic case is obviously
higher than in the possibilistic one, since one loses the advantage of the use
of the first pruning condition. However, it remains more efficient than the one
based on the computation of the worlds attached to the initial possibilistic
database, due to the reduction obtained by means of the compact evaluation
of query Q.

6 Conclusion

This chapter addresses the issue of querying relational databases where some
attribute values are imprecise and represented by possibility distributions.
An adapted model with a subset of the relational algebra has been presented
(see [3, 4] for details). In this context, the result of a query is a possibilistic
relation, which is not easily interpretable by a final user. This situation led
us to consider a new type of queries called possibilistic queries, whose general
form is: “to what extent is it possible and certain that the answer to Q satisfies
property P?”. In this chapter, cardinality-based generalized yes/no queries
have been investigated. Their treatment is based on a two-step mechanism.
The first step is the evaluation of the algebraic query involved, and the second
one is a post-processing relying on a “trial and error” technique.

This work opens different lines for future research. One of them is related
to the performances obtained for cardinality-based generalized yes/no queries.
Clearly the approach proposed is much more efficient than a technique based
on the computation of worlds but it would be interesting to assess in a more
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precise way the additional cost linked to the presence of imprecise data (with
respect to similar queries on precise data).
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Summary. In many content-based approaches to product recommendation, the set
of suitable items is determined by mapping the customer’s needs to required product
characteristics. A ‘failing query’ in that context corresponds to a situation in which
none of the items in the catalog fulfills all of the customer requirements and in which
no proposal can be made. ‘Query relaxation’ is a common technique to recover from
such situations which aims at determining those items that fulfill as many of the
constraints as possible. This chapter proposes two new algorithms for query relax-
ation, which aim at resolving common shortcomings of previous approaches. The
first algorithm addresses the problem of response times for computing user-optimal
relaxations in interactive recommendation sessions. The proposed algorithm is based
on a combination of different techniques like partial evaluation of subqueries, pre-
computation of query results and compact in-memory data structures. The second
algorithm is an improvement of previous approaches to mixed-initiative failure re-
covery: Instead of computing all minimal ‘conflicts’ within the user requirements in
advance – as suggested in previous algorithms – we propose to determine preferred
conflicts ‘on demand’ and use a recent, general-purpose and fast conflict detection
algorithm for this task.1

1 Introduction

Recommender systems are interactive software applications that support the
online customer in his/her decision making and buying process. In content-
based approaches to product recommendation, the product proposals are
generated on the basis of detailed descriptions of the items in the catalog:
According to Bridge [1], case-based, utility-based, or knowledge-based rec-
ommender systems basically fall into this category. Although there may be
different techniques involved for eliciting customer requirements, ranking the
products, or finding similar items, in many implementations of such systems,
some or all of the customer’s requirements are – at least initially – viewed as
1 Originally published in Proceedings of the 3rd IEEE Conference on Intelligent
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constraints that the items in the proposal have to satisfy [8]. However, when
the initial selection of items is based on such a query to the catalog, situa-
tions can easily arise, in which none of the products in the catalog fulfills all
of the requirements. One basic approach to recover from such situations is
to search for items that fulfill as many constraints as possible, which can be
achieved by incrementally eliminating one or more constraints from the query
(query relaxation). In [8], McSherry proposes an incremental, mixed-initiative
approach to query relaxation based on results that were achieved in the area
of ‘cooperative query answering’ [3]. In his work, he maps the problem of
finding items that fulfill as many constraints as possible to the problem of
finding a ‘maximal succeeding subquery’ (XSS) of the original query. In addi-
tion, McSherry proposes the computation and utilization of ‘minimal failing
subqueries’ (MFS) and let the user decide in an incremental process, on which
part of the query he/she is willing to compromise. Nonetheless, when using the
recovery algorithm described in [8], it cannot be guaranteed that the smallest
possible or an optimal relaxation with respect to some function describing the
‘costs’ of the compromises will be found. In order to find an optimal relax-
ation, in general all XSSs/MFSs of the query have to be known or enumerated,
a problem which was shown to be NP-hard in general [3]. In fact, even small-
sized problems soon become intractable, in particular if we consider the hard
real-time requirements of interactive recommender applications.

In this chapter, we propose an algorithm in which the individual subqueries
of the original query are evaluated independently in advance and the set of all
XSSs can be enumerated by combining these partial results without further
costly query operations. The algorithm requires exactly n queries to the cata-
log for finding all minimal and the optimal relaxation of a query consisting of n
subqueries; the additional memory requirements for storing the partial results
are also limited. Our approach therefore improves existing work in the area in
two directions: First, it reduces the number of database queries for computing
possible relaxations to a fixed number which is required in time-bounded in-
teractive recommender applications. In addition, in contrast to previous work
in which the size of the relaxation was the main optimization criterion, our
technique also supports the concept of preferred relaxations.

The chapter is organized as follows. After giving an introductory example
in te next section, the formal foundations of the approach are summarized.
We then describe our algorithm for fast enumeration of all XSSs and after-
wards discuss details of the implementation and the evaluation which was
done in several real-world recommender applications. The chapter ends with
a discussion of previous work in the area and an outlook on future extensions.

2 Example

We will illustrate the relaxation problem and our approach with a simplified
example from the domain of digital cameras. Our product database consists
of the products p1 . . . p4 which are characterized by different properties as
shown in Fig. 1.
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Fig. 1. Product database of digital cameras

Q1234

Q123

Q12

Q1 Q2 Q3 Q4

Q13 Q14 Q23 Q24 Q34

Q124 Q134 Q234

∅

Fig. 2. Lattice of possible subqueries, minimal relaxations are printed in shaded
boxes

Let us assume that the user’s requirements can be expressed with the
following query to the database, which unfortunately fails, given the set of
available products.

Q ≡ {usb = true (Q1 ), firewire = true (Q2 ),
price < 300 (Q3 ), resolution >= 5 MP (Q4 )}

Query relaxation will now be viewed as the problem of finding a maximal
succeeding subquery (XSS) of Q in order to retrieve products that fulfill as
many constraints as possible; the difference between the original query and
an XSS is called a minimal relaxation’. In current approaches to query relax-
ation the original query Q is split into subqueries according to the attributes
which are used in the query (Q1 to Q4 in our example). The search space
in the relaxation problem is determined by the number of these subqueries,
i.e., if a query can be divided into n such subqueries, there exist (2n− 2) can-
didates that theoretically have to be examined.2 The lattice of the possible
subqueries for our example is illustrated in Fig. 2. Testing each of the possible
combinations individually is in general not possible in realistic applications
because in typical implementations of such systems, each test corresponds to
a query to the catalog, i.e., a database query.
2 We do not have to examine the original query and the empty query.
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In [9], an approach for enumerating all maximal succeeding subqueries is
described in which the search space is reduced by (a) constructing the sub-
queries in decreasing order with respect to query length and (b) by removing
subqueries of already succeeding subqueries from the remaining search space.
Still, if we apply this on our example problem, only the single-element sub-
queries will be pruned from the search space. We therefore propose an ap-
proach, in which we can limit the number of needed catalog queries to the
number of subqueries of the original query Q, which means that in our case
we will only need four queries. We can achieve this by first evaluating the indi-
vidual subqueries individually and then analyzing and combining the partial
results in memory.

The results for the subqueries for our example are illustrated in Fig. 3: A
‘1’ in the matrix means that the product will be returned by the subquery;
‘0’ means that the product will be filtered out.

For determining all maximal succeeding subqueries of a query Q we can
now proceed as follows. For each product pi, we can directly infer which of the
subqueries causes pi to be filtered out, which we denote as Product-specific
Relaxation PSX(Q,pi), e.g., PSX(Q,p1) = {Q2,Q3}, PSX(Q,p2) = {Q1,Q3}
and so forth. In fact, each PSX(Q,pi) is also a possible relaxation for the
overall problem: If we remove all elements of PSX(Q,pi) from the original
query, at least product pi will satisfy the remaining requirements. Still, not all
PSX(Q,pi) are minimal relaxations, but determining all minimal relaxations
can be easily achieved by iterating over all PSX(Q,pi) once as follows: If the
current PSX(Q,pi) is a superset of an already found relaxation, ignore it. If
not, remember it and remove all those relaxations that were already found
and for which the current PSX(Q,pi) is a subset.

Having determined all maximal succeeding subqueries, we can then select
the one that promises to be the most useful for the customer. Without having
a ‘cost model’ for the individual parts of the query, a suitable strategy will
be to use the relaxation with the smallest cardinality. If such a cost model
exists (e.g., information that users rather tend to compromise on the make
than on the price), we can also determine the relaxation that minimizes this
cost function. Overall, the main difference compared to previous approaches
[8, 9] is that we do not search in the exponentially growing set of possible
combinations of subqueries (the lattice), in which a lot of unnecessary checks
are required.

ID p1 p2 p3 p4
1

1

11

0
1
0
1
0

Product-specific relaxation for p1

0

0 0
1

1

0

0

Q1
Q2
Q3
Q4

Fig. 3. Evaluating the subqueries individually
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3 Determining Maximal Succeeding Subqueries

We will now describe the relaxation problem and our algorithms more for-
mally. We base our work on the formalisms introduced in [3, 8, 9].

Definition 1. (Query): A query Q is a conjunctive query formula, i.e., Q ≡
A1 ∧ . . . ∧Ak. Each of the A’s is an atom (condition).

In the following we denote the number of atoms of the query as |Q| (query
length).

Definition 2. (Subquery): Given a query Q consisting of the conditions A1 ∧
. . . ∧ Ak, a query Q′ is called asubquery of Q iff Q′ ≡ As1 ∧ . . . ∧ Asj, and
{s1 , . . . sj} ⊂ {1 , . . . , k}

Lemma 1. If Q′ is a subquery of Q and Q′ fails, also the query Q itself
must fail.

Note that in [8] and [9], queries are split into subqueries according to
the attributes that the query involves. Within our approach, however, such a
specific form of partitioning is not required. Thus, in our approach it is also
allowed that an individual query atom consists of a disjunction of conditions.

Valid and minimal relaxations and maximal succeeding subqueries are
defined as follows.3

Definition 3. (Valid relaxation): If Q is a failing query and Q′ is a succeeding
subquery of Q, the set of atoms of Q which are not part of Q′ is called a valid
relaxation of Q.

Definition 4. (Minimal relaxation): A valid relaxation R of a failing query
Q is called minimal, if there exists no other valid relaxation R′ of Q which is
a subset of R.

Maximal succeeding subqueries in the sense of [3] are directly related to
minimal relaxations.

Definition 5. (Maximal succeeding subquery – XSS): Given a failing query
Q, a Maximal Succeeding Subquery XSS for Q is a non-failing subquery of Q
and there exists no other query Q′ which is also a non-failing subquery of $Q$
for which holds that XSS is a subquery of Q′.

Lemma 2. Given a maximal succeeding subquery XSS for Q, the set of atoms
of Q which are not in XSS represent a minimal relaxation R for Q.

The approach described in this chapter aims at minimizing the number of
queries to the catalog by analyzing the partial results that are obtained by
evaluating the subqueries individually.
3 Note that the term ‘relaxation’ in the context of this work means eliminating parts

of the query rather than asking the user to revise his constraints like, e.g., in [2].
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Definition 6. (Partial query results – PQRS:) Let P = {p1 , . . . , pn} be the
set of products in the catalog. Given a query Q consisting of atoms A1 , . . . , Ak,
then PQRS(Ai, P ) is a function that describes the subset P ′ ⊆ P for which
condition Ai holds, i ∈ {1 , . . . , k}.4

Lemma 3. Given a failing query Q and a non-empty product catalog P, a
relaxation R for Q always exists.

For determining the partial query results for a query Q, exactly |Q| queries
to the catalog are required. Our algorithm for determining all minimal re-
laxations works by analyzing the possible relaxations for each product by
exploiting the partial query results.

Definition 7. (Product-specific relaxation – PSX): Let Q be a query consist-
ing of the atoms A1 , . . . , Ak, P the product catalog, and pi an element of P .
PSX(Q, pi) is defined to be a function that returns the set of atoms Ai from
A1 , . . . , Ak that are not satisfied by product pi.

Lemma 4. The set of atoms returned by PSX(Q, pi) is also a valid relaxation
for Q.

Determining whether an atom ai ∈ A1, . . . ,Ak of a query Q is part of the
product-specific relaxation for pi can be done without further queries to the
catalog by evaluating whether pi ∈ P is contained in the partial query result
PQRS(Ai,P). If pi is not contained in PQRS(Ai,P), then Ai has to be part of
the product-specific relaxation PSX(Q,pi). Based on these definitions, we now
describe an algorithm for determining all minimal relaxations of a query Q.

Algorithm MinRelax is sound and complete, i.e., it only returns minimal
relaxations and it does not miss any of the minimal relaxations (Fig. 4).

Theorem 1. Given a failing query Q and a product database P containing n
products, at most n minimal relaxations can exist.

Proof. For each product pi ∈ P there exists exactly one subset PSX of atoms
of Q which pi does not fulfill and which have to be definitely relaxed altogether
in order to have pi in the result set. Given n products in P, there exist exactly
n such PSXs. Thus, any valid relaxation of Q has to contain all the elements
of at least one of these PSXs for obtaining one of the products of P in the
result set. Consequently, any relaxation which is not in the set of all PSXs
of Q has to be a superset of one of the PSXs and is consequently no longer
a minimal relaxation. This finally means that any minimal relaxation must
be contained in the PSXs of all products and not more than |PSX| = n such
minimal relaxations can exist. ��

Proposition 1. Algorithm MinRelax is sound and complete, i.e., it returns
exactly all minimal relaxations for a failing query Q.
4 PQRS can be represented as a matrix of zeros and ones as shown in Fig. 3
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Algorithm: MinRelax
In: A query Q, a product catalog P
Out: Set of minimal relaxations for Q

PQRS = compute the partial query results for all atoms ai of Q
for the product catalog Q

MinRS = ©/
forall pi ∈ P do

PSX = compute the product-specific relaxation PSX(Q, pi) by using PQRS
% check relaxations that were already found
SUB = {r ∈ MinRS|r is subquery of PSX}
if SUB �= ©/

% current relaxation is superset of existing
Continue with next pi

endif
SUPER = {r ∈ MINRS|PSX is subquery of r}
if SUPER �= ©/

% remove supersets
MinRS = MinRS\SUPER

endif
% store the new relaxation
MinRS = MinRS ∪ PSX

endfor
return MinRS

Fig. 4. Algorithm for determining all minimal relaxations

Proof. The algorithm iteratively processes the product-specific relaxations
(PSXs) for all products pi ∈ P. From Lemma 4 we know that all these PSXs
are already valid relaxations. Minimality of the relaxations returned by Min-
Relax is guaranteed by the algorithm, because (a) supersets of already discov-
ered PSXs are ignored during result construction and (b) already discovered
PSXs that are supersets of the current PSX are removed from the result set.
As such, there cannot exist two relaxations R1 and R2 in the result set for
which R1 is a subset of R2 or vice versa. In addition, we know from Theorem 1
that all minimal relaxations are contained in the PSXs of the products of P.
Since MinRelax always processes all of these elements, it is guaranteed that
none of the minimal relaxations is missed by the algorithm.

3.1 Complexity Issues

In our algorithm, the number of required executions of the typically most
costly operation – querying the catalog – is equals to the number of atoms of
the original query. The other operation that potentially induces relevant com-
putation times is the determination of the subset and superset property when
iterating over the products. In the theoretically worst case, at each iteration
i this check has to be done for all of the previously found i − 1 relaxations.
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This means that if we have n products, (n ∗ (n + 1 ))/2 of such checks have
to be done in the worst case. However, such checks can be efficiently done in
memory and our experiments show that in realistic cases the number of actual
checks that have to be made is at least an order of magnitude lower than the
theoretical upper bound.

The efficiency of the algorithm with respect to the number of required
queries comes at the price of a slightly increased space complexity for storing
the partial results: For each of the individual atoms of the query, the list
of matching products has to be stored. However, there exist p products and
the query consists of a atoms, we need at most p ∗ a bits for storing the raw
information when using, e.g., a representation based on bit-sets.

3.2 Searching Preferred Relaxations

Up to now, we have assumed that relaxations of smaller size, i.e., those who
contain fewer conditions to be removed from the query, are preferable for
the user. In an interactive recommender application we therefore might pick
one of the smallest relaxations and present it to the user. However, as also
mentioned in [8], the users might have different preferences on which product
characteristics they are more willing to compromise. Such specific preferences
can be incorporated into our approach by associating costs (of relaxation) with
each atom of the query and defining an overall cost function that for instance
takes both the number of atoms in the relaxation and these individual costs
into account.

Definition 8. (Cost function) Let Q be a failing query and R a valid re-
laxation for Q consisting of the atoms a1 , . . . , ak. If ICOSTS is a func-
tion that associates a positive integer number with each ai expressing the
individual costs of relaxing atom ai, the overall costs for R for Q can be
described by any function COSTS(Q, R, ICOSTS) that returns a positive in-
teger number expressing the overall costs of R. In addition it has to hold that
COSTS(Q,R′, ICOSTS) < COSTS(Q,R, ICOSTS) if R′ ⊂ R} for ensur-
ing that adding further atoms to a relaxation does not decrease the cost value.

Given such a cost function, we can define an ordering between the possible
relaxations and describe the properties of an optimal relaxation.

Definition 9. (Optimal relaxation): Given a failing query Q, a valid relax-
ation R for Q is said to be optimal, if there exists no other valid relaxation
R′ for which COSTS(Q,R′, ICOSTS) < COSTS(Q,R, ICOSTS).

Determining the optimal relaxation based on our PSX-representation can
be easily done by scanning the set of PSXs, evaluating the cost function
individually and remembering the PSX that minimizes this cost function.
Besides searching only for the optimal relaxation, it is also easily possible to
determine an ordering among the relaxations for those cases, in which we want
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to present the user a list of possible relaxations he/she can choose from. Such
an ordering can be achieved by sorting the PSX’s according to their costs and
by removing supersets of already found PSX’s.

Note that the cost value for relaxing an individual atom of the query
can come from different sources: They can be defined in advance, they could
be derived from previous recommendation sessions by taking into account
which compromises users typically prefer, or the user could also be directly
questioned about his/her personal preferences.

4 Incremental Relaxation

Another general strategy for dealing with query failures in interactive recom-
mender applications is to let the user incrementally decide on which attributes
(i.e., constraints) he/she is willing to compromise instead of computing a
complete relaxation at once. Such incremental, user-driven approaches can be
implemented with the help of ‘Minimal Failing Subqueries’ [3, 8]:

Definition 10. (Minimal Failing Subquery – MFS): A failing subquery Q∗

of a given query Q is a minimally failing subquery of Q if no proper subquery
of Q∗ is a failing query.

In general, a failing query may consist of many different MFSs: In our
example problem from Sect. 2, the MFSs of Q are {Q1, Q2}, {Q2, Q3}, and
{Q3, Q4}. From Definition 10 we know that we have to relax at least one
element from each MFS in order to get a non-empty result set.5 In an in-
cremental approach to relaxation, we can therefore iteratively select one of
the (remaining) MFSs of the problem and let the user decide, which of the
constraints should be relaxed next until a solution can be found.

It has been already shown that enumerating all MFSs of a query is in
general an NP-hard problem although finding one arbitrary MFS for a query
of size N can be accomplished with the help of N subsequent queries [3].

However, not all of the MFSs may be equally preferable for the user. Let
us assume that the costs for the individual subqueries in our example are
Q1 = 10, Q2 = 20, Q3 = 30, Q4 = 40 which means that {Q1, Q3} would
be the most preferable solution. It would therefore be better to first present
MFS {Q1, Q2} and then {Q2, Q3} (which includes the chance that the best
relaxation {Q1, Q3} is found) rather than presenting {Q2, Q3} and {Q3, Q4},
which can only lead to non-optimal solutions in a first try.

In contrast to the approach described in [8], we propose to compute
such minimal preferred MFSs ‘on-demand’ rather than computing all possible
MFSs in advance, which can be a very costly operation. The computation
of such preferred MFSs (conflicts) can be accomplished by adapting Junker’s

5 In fact, the set of all minimal relaxations corresponds to the Hitting Set of all
MFS, compare, e.g. [10].



www.manaraa.com

90 D. Jannach

QuickXPlain [7] algorithm for our purposes. QuickXPlain is a general, non-
intrusive technique for detecting conflicts in overconstrained problems whose
main properties are that it is capable of taking preferences into account while
at the other hand it minimizes the number of required consistency checks
(i.e., queries in our case) based on a divide-and-conquer search strategy. The
complexity results from [7] show for instance that in one possible configura-
tion of the algorithm, finding a conflict of size k in n elements in the best
case only needs log2 (n/k) + 2k queries and 2k ∗ log 2 (n/k) + 2k in the worst
case.6 The adapted version of QuickXPlain is depicted in Fig. 5.

A possible algorithm for interactive relaxation that uses our adapted
QuickXPlain algorithm is listed in Fig. 6. In this algorithm, the user is in-
teractively asked to select one of the elements of the remaining conflicts and
a choice point is set on every selection so that the user can revise his/her
selection through backtracking and try a different path. All elements that
have already been chosen for relaxation are not considered anymore when the

Algorithm: mfsQX
In: A failing query Q
Out: A preferred conflict of Q

A = sorted list of atoms of Q
return mfsQI(©/, A)

function mfsQI (BG,A)
In: BG: List of atoms in background

A: List of atoms of failing query
Out: A preferred conflict of Q

% Construct and check the current set of atoms
Query = ∧b∈BG (b)

% Current branch has become inconsistent
if query is not successful

return ©/
endif
if |A| = 1

return 1
endif
% Split remaining atoms into two parts
C1 = {ai ∈ A|i < (|A|/2)}
C2 = A\C1
% Evaluate branches
∆1 = mfsQI(BG ∪ C1, C2)
∆2 = mfsQI(BG ∪ ∆1, C1)
return ∆1 ∪ ∆2

Fig. 5. Using QuickXPlain for computing preferred MFS

6 This means that if there exist N atoms in the query, we will always require less
than N queries for finding a conflict in realistic cases.
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Algorithm: Interactive Relax
In: Sorted list of atoms A of failing query A

Query = ∧a∈A (a)

if query is not successful
% Compute a minimal preferred conflict
conflict = mfsQX(©/, A)
remaining = conflict
% Set up the choice points
do |conflict| times

choice = Ask user to select an option from remaining or ‘backtrack’
if choice = ‘backtrack’ then return
remaining = remaining \ {choice}
% Remove the choice and try again
interactiveRelax(A\ {choice})

end do
else

Minimize the relaxation and compute results
Report success and show proposal to user
response = Ask user if result is acceptable
if response = ‘yes’ then

exit function
% backtrack to last choice point
else return
endif

endif

Fig. 6. Basic algorithm for interactive relaxation

algorithm searches for the next conflict. The exploration of the search space is
thus similar to a basic depth-first backtracking procedure (AND/OR search)
for Constraint Satisfaction Problems from [11].

Note that in the algorithm in Fig. 6 we minimize the relaxation before
the results are presented to the user, because – due to the user-driven nature
of the algorithm – relaxations may not be minimal. In our example, this can
happen if the user selects Q1 from the first conflict {Q1, Q2}, then Q2 from
{Q2, Q3}, and finally one of the elements of the remaining conflict {Q3, Q4}.
Both {Q1, Q2, Q3} and {Q1, Q2, Q4} are valid relaxations, but not minimal,
since Q2 is superfluous. However, minimizing the relaxation is trivial as we
only have to check for each element of the relaxation individually if we can
remove it from the relaxation without making the query become a failing
query again. The main purpose of the minimization procedure can be seen
in the fact that more of the initial constraints of the user can be taken into
account. Of course, if a recommender system also uses the elements of the
relaxation for constructing user-understandable explanations, these effects of
minimization have to be explained to the user adequately.
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In summary, we view the algorithms described in this section as possible
alternatives for computing relaxations whenever it is not possible to compute
the partial query results as described in Sect. 3.

5 Evaluation

The proposed technique has been implemented and evaluated within the
Advisor Suite system (see, e.g., [4, 6]), a fully knowledge-based framework
for the development of interactive recommender applications. In this system,
the initial set of products to be presented to the user is determined with
the help of ‘if-then-style’ filter rules that relate customer requirements with
product characteristics. This indirection allows us to implement a more user-
oriented interaction view, such that the (non-experienced) users do not have
to be questioned directly about desired product characteristics. If we consider
the example from Sect. 2, we would, for instance, not ask the user about his
need for ‘Firewire’ support, but rather try to find out what his/her mobility
and connectivity requirements are.

Typical filter rules for our example problem could be the following:

F1: if high-quality-printouts are required then
only recommend cameras with a resolution higher than 5MP

F2: if user entered price limit L then
only recommend cameras that cost less than L

F3: if user needs high connectivity then
only recommend cameras that support ‘Firewire’

At run-time, when a product proposal has to be generated – which is typ-
ically done after an initial requirements elicitation phase – the filter rules are
evaluated by the system: For each rule it is determined, whether the condition
in the antecedent of the rule is fulfilled, i.e., whether the filter rule is active
or not. The conclusions of those active rules are then used to construct a
conjunctive query to the catalog. Note that the conclusions of the rules can
contain arbitrary complex expressions on product characteristics, e.g., consist-
ing of several conjunctions and disjunctions. This modular way of modeling
recommendation rules also forms the basis for splitting up the conjunctive
query into individual atoms for relaxation in a natural way.

The filter rules themselves are modeled in Advisor Suite with the help
of graphical editing tools (see Fig. 7). Each rule can also be annotated with
explanatory texts which are presented to the user in the explanation phase.
A text can be maintained both for the case when the rule was successfully
applied as well as for the case that the rule had to be relaxed. Finally, we can
define an a-priori priority value for each rule, which corresponds to the costs
of relaxing the rule in cases that no product fulfills all of the requirements. In
practical applications, these priority values are defined by the domain expert
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Fig. 7. Graphical editing tool for filter rules

who for instance knows that typical customers rather compromise on the
manufacturer of a camera than on other characteristics.

Up to now, about twenty different recommender applications for various
domains have been built with Advisor Suite and have been successfully de-
ployed in commercial settings, which gives us in particular a good impression
of the size and complexity of realistic knowledge bases:

• The number of products available in the catalog typically ranges from a
few dozen to a several hundred.

• The number of filter rules remains manageable, i.e., only a few dozen rules
were required in nearly all cases.

• Many of the rules are mutually exclusive with regard to their activation
condition, i.e., only a smaller part of the rules is actually active when
relaxation has to be done.

5.1 Running Times

The first aspect we have evaluated are the running times for determining
(optimal) relaxations: Advisor Suite is a Java-based system that operates on
top of standard relational database systems; all tests and measurements have
been performed on standard desktop PCs with a ‘Pentium M 2 GHz’ processor
and 512 MB of RAM. The most costly operation when determining relaxations
in our approach are the queries that are required to compute the result sets
for the individual filters, i.e., for each active filter, exactly one query has to be
executed. The query time mostly depends on the number of products in the
catalog and to a smaller extent on the complexity of the query. On average,
a single query takes around 5 ms in test cases with around 500 products.

If we assume that we have a knowledge base containing 70 filter rules, and
35 of them are active – which is already a rather hard case in realistic settings –
the time for computing the individual filter results is 35× 5 ms = 175 ms.
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The results of the individual filter rules are represented in memory in the
form of Java BitSets, which means that (a) the memory requirement for the
raw data is limited to NumberOfProducts ∗ NumberOfActiveFilters bits, and
(b) that the analysis of the partial results can be efficiently done based on
fast bit-set operations.

In all of the recommender applications that are in productive use, we fol-
low a strategy in which we initially compute only one optimal relaxation with
respect to size and relaxation costs, which is subsequently used to explain the
proposal to the user. The time needed for determining this optimum depends
on the complexity of the cost function and the number of products. However,
these operations can be performed in-memory and in our test cases they re-
quired about a tenth of the query time (e.g., 17.5 ms in the above-mentioned
example).

Regarding query time, we also exploited a particularity of the Advisor
Suite approach of modeling filter rules: In many cases, the consequent of the
rules contains no ‘variables’ (e.g., ‘attribute usb must be true’). Therefore,
we can pre-compute and cache the partial results for such rules in advance,
e.g., when the server is started up. In addition, these partial results can also be
shared among different recommendation sessions of different users, since the
partial results remain stable as long as the filter rule is not changed and the
set of products is the same. Such pre-computation, however, is not possible if
the consequent contains variables, like in filter rule F2 in the example above,
that takes the user input with respect to allowed costs directly into account.
Still, our experiences from different application domains show that the major
part of the filter rules do not contain such variables, which means that the
number of needed queries can be significantly reduced. Overall, even if no such
pre-computation was done, in none of our test cases more than 500 ms were
required for finding the optimal relaxation.

5.2 Usability Aspects

In all our fielded recommender applications, we have adopted a strategy in
which we immediately compute a relaxation when we recognize that no prod-
uct satisfies all constraints that were elicited in the advisory dialog. Thus, the
relaxation process is not visible for the user in the first place, since in all cases
one or more products will be recommended. Only when the user asks ‘Why
this recommendation?’, the proposal is explained with the help of the natural-
language text annotations of the filter rules: ‘Pro’-arguments correspond to
filters that could be applied; ‘con’-arguments correspond to the relaxed ones.

This initial relaxation is computed based on the a-priori priorities that
were maintained by the domain expert. Since these priorities may not match
the customer’s actual preferences, the user is then given the possibility to
interactively manipulate the priorities: In particular, the user can choose one
or more of the relaxed filter rules and state that these rules should not be
relaxed. After that, a new relaxation is computed and an alternative proposal
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is made. Of course, if the user enforces the application of too many filter rules,
an empty result can be the consequence. In such situations, the user can undo
his/her decisions and evaluate other alternatives.

For one of the applications built with Advisor Suite a detailed study was
performed [12] in order to evaluate the usability of the overall system. The
study of an application hosted on Austria’s largest e-Commerce site (with
respect to daily visits) included the analysis of more than 100,000 recommen-
dation sessions and about 1,600 feedback forms. Although this study was not
primarily concerned with the relaxation facilities, we could learn in particular
from the feedback forms that the system’s capability to produce explanations
was the feature that was appreciated most by the users. Even more, from the
interaction logs we could see that many visitors made use of the possibility
to evaluate different alternatives of relaxations, in cases when their original
requirements could not be fulfilled.

Note that in the fielded applications we did not allow the users to fine
tune the priorities by themselves, e.g., by assigning a value between 1 and 10
for each rule, because an in-house assessment showed that such a task may
be too complex for most users and it is also complicated to explain the effects
of changing these priorities to the user. However, our future work includes
the incorporation of self-adapting priorities, i.e., a mechanism that tracks the
users’ behavior over a given time frame and learn the typical user preferences.

6 Summary

In this chapter we have shown how optimal relaxations for unsuccessful queries
in the context of interactive, content-based recommenders can be efficiently
computed by pre-evaluating and analyzing the individual subqueries of the
failing query. The proposed approach has been implemented in a domain-
independent framework for building knowledge-based recommender systems
and was evaluated with the help of several real-world recommender applica-
tions. Our measurements showed that even hard test cases can be successfully
solved within the tight time frames that we have to deal with in interactive
recommendation sessions. An empirical evaluation suggests that relaxation
and explanation features are well appreciated by the online users as long as
no complex interaction sequences are required.

Our work is based on the formalisms and relaxation approach also used
by Godfrey [3] in the context of ‘Co-operative Query Answering’. The goal
in that research field is to establish a basis for building database systems
that are capable of returning more informative answers than only ‘yes’ or
‘no’ to the users’ queries. In principle, the algorithms presented in [3] could
also be applied for our specific purposes in the recommendation domain.
Nonetheless, the search algorithms for XSSs from [3] do not exploit partial
pre-computations for adequate run-time behavior; furthermore, no ranking of
relaxations based on preferences is possible, i.e., the ranking is restricted to
cardinality only.
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The work from [8] and [9] is similar to ours with respect to the overall
goal; the approaches presented in this chapter can be seen as algorithmic
improvements that take specific characteristics of the domain into account,
e.g., the limited number of records in the catalog, for guaranteeing short
response times. In addition, user preferences can be directly taken into ac-
count for optimization purposes. Compared with [8] and [9], we also claim
that our approach is more flexible with regard to how the query can be split
into subqueries in a natural way, which is done in [8] on the basis of query
attributes only.

Our future work will include further research towards ‘self-adapting’ sys-
tems, where priorities and preferred relaxations can be learned from differ-
ent sources of knowledge like past user behavior. An recent extension of our
approach, which allows us to determine optimal relaxations that comprise
at-least-n products, can be found in [5].

References

1. D. Bridge. Product recommendation systems: A new direction. In R. Weber and
C. Wangenheim, editors, Workshop Programme at fourth International Confer-
ence on Case-Based Reasoning, pages 79–86, 2001

2. D. Bridge. Towards conversational recommender systems: a dialogue grammar
approach. In D. W. Aha, editor, Proceedings of the EWCBR-02 Workshop on
Mixed Initiative CBR, pages 9–22, 2002

3. P. Godfrey. Minimization in cooperative response to failing database queries.
International Journal of Cooperative Information Systems, 6(2):95–149, 1997

4. D. Jannach. Advisor suite – a knowledge-based sales advisory system. In
R. Lopez de Mantaras and L. Saitta, editors, Proceedings of the European
Conference on Artificial Intelligence, pages 720–724, Valencia, Spain, 2004.
IOS Press

5. D. Jannach. Techniques for fast query relaxation in content-based recommender
systems. In C. Freksa, M. Kohlhase, and K. Schill, editors, KI 2006 – 29th
German Conference on AI, pages 49–63, Bremen, Germany, 2006. Springer
LNAI 4314

6. D. Jannach and G. Kreutler. A knowledge-based framework for the rapid de-
velopment of conversational recommenders. In X. Zhou, S. Su, M. Papazoglou,
M. Orlowska, and K. Jeffery, editors, Proceedings of the Fifth International Con-
ference on Web Information Systems – WISE 2004, pages 390–402, Brisbane,
2004. Springer LNCS 3306

7. U. Junker. Quickxplain: Preferred explanations and relaxations for over-
constrained problems. In Proceedings of the National Conference on Artificial
Intelligence AAAI’04, pages 167–172, San Jose, 2004. AAAI Press

8. D. McSherry. Incremental relaxation of unsuccessful queries. In P. Funk and
P.A. Gonzalez Calero, editors, Proceedings of the European Conference on Case-
Based Reasoning, pages 331–345, 3155, 2004. Springer LNAI

9. D. McSherry. Maximally successful relaxations of unsuccessful queries. In Pro-
ceedings of the 15th Conference on Artificial Intelligence and Cognitive Science,
pages 127–136, Castlebar, Ireland, 2004



www.manaraa.com

Finding Preferred Query Relaxations in Content-Based Recommenders 97

10. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987

11. E. Tsang. Foundations of Constraint Satisfaction. Academic, UK, 1993
12. M. Zanker and C. Russ. Geizhals.at: vom Preisvergleich zur e-commerce Servi-

ceplattform. in: S. M. Salment and M. Gröschel, editors, Handbuch Electronic
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Summary. Conceptual modeling is viewed as a promising means to represent con-
textual knowledge, which may be enriched with semantics. Such modeling is capable
of describing context, as well as, reasoning about it. Moreover, contextual reason-
ing is attained taking into consideration similarity-based approaches. This article
proposes approximate reasoning about similarity among pieces of context using on-
tological modeling, description logics representation, and fuzzy logic inference rules.
We report contextual similarity and fuzzy reasoning on top of logic based context
semantics. Special emphasis is placed on similarity and analogical reasoning about
context.

1 Introduction

Conceptual modeling is used in order to describe concepts in a syntactic and,
more interestingly, in a semantic manner. Moreover, contextual information
(context) can be represented by hierarchical structured concepts belonging to
epistemic ontologies (taxonomies of concepts). One of the major aspects of
this modeling is the similarity measurement between concepts thus the simi-
larity assessment between pieces of context has to be examined. Agents try to
identify whether two concepts are semantically similar based on semantic in-
formation (e.g., generalization relations and constraints). Therefore, different
conceptual modeling techniques support, inevitably, different similarity met-
rics. The more semantic information a conceptual model supports, the more
precise the similarity measurement becomes.

Semantics is the key enabler for a reasoning process to conclude how simi-
lar and/or compatible two concepts are. The uncertainty, which arises by the
logical comparison of two pieces of context, can be interpreted as the simi-
larity measure between the corresponding concepts. Context reasoning leads
to context classification provided that, context can be expressed as concepts
asserted in epistemic ontologies. We propose and implement an approximate
reasoning process for inferring knowledge about quite similar and compatible
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pieces of context. The most similar asserted context with the current context
(actual context) could be approximately interpreted as the most representa-
tive one. Specifically, let the formula p→. q be asserted as knowledge and let q
be the actual context then, we measure how much q is similar and compatible
with p. This idea has been partly derived from [1] referring to reasoning about
analogy, regarding logical and similarity-based approaches.

Conceptual modeling using conceptual graphs, as already supported by the
Resource Description Framework (RDF) scheme [2] does not provide rich se-
mantic conceptual expressions, contrary to the RDF(S) scheme [2]. The former
conceptual representation describes concepts and relations (binary predicates)
using the well-known scheme: subject–predicate–object. On the other hand,
RDF(S) adds more semantics in terms of conceptual classification through
transitive generalization relations (e.g., a concept p is more specific than a
concept q, that is, p is-a q). Therefore, RDF(S) encompasses sets of con-
ceptual properties that characterize concepts. Moreover, Description Logic
(DL) [2] enriches semantic conceptual expressions with quantification and
universal constraints over relations. Moreover, DL (implemented by the OWL-
DL standard [2]) supports conceptual reasoning. Consequently, the reasoned
information might provide a more spherical view over the similarity measure-
ment between concepts. Hence, generalization relations could be considered
as necessary information in order to infer how similar and analogous two
concepts are.

One may consider that, conceptual similarity involves an assessment based
on what is known about concepts (pieces of context). Such knowledge is
well expressed in ontology that describes the conceptualisation of the world.
Ontology describes taxonomies of concepts, created by generalization rela-
tions, including axioms and constraints over relations. It describes facts that
are assumed to be always true and it is able to conclude facts that are previ-
ously unasserted (unclassified). In order to reason about conceptual similarity,
the taxonomical structure of concepts and the enhanced semantics that sup-
ports axioms over such taxonomies have to be taken into consideration.

The article is organized as follows: a conceptual model for representing
contextual information is reported in Sect. 2. In Sect. 3, we propose a method
for measuring conceptual similarity while in Sect. 4 we refer to an approxi-
mate reasoning process for inferring similar and compatible pieces of context.
In Sect. 5 we evaluate our method through experiments and the last two sec-
tions outline prior work, discuss conclusions, and identify future research on
the area.

2 Conceptual Context Modeling

Concepts belonging to ontology can represent contextual information. Con-
cepts are hierarchically structured forming a conceptual taxonomy or taxon-
omy. Specifically, taxonomy is considered as a collection of concepts organized
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Fig. 1. Ontology: a set of conceptual taxonomies

by a partial order induced by a generalization relation, i.e., is-a or ⊆. For
instance, the concept Meeting is more generic than that of Ph.D. meeting
or Faculty meeting (see Fig. 1), i.e., Ph.D. meeting ⊆ Meeting. The hierar-
chy of concepts can be exploited for measuring their similarity according to
their position in the taxonomy. However, in conceptual modeling, semantics
is enriched with certain axioms and constraints over concepts and relations.
The considered semantics is (a) the disjoint axiom, (b) the closure axiom and
(c) the compatibility relation between concepts. The first axiom denotes that
two concepts, p and q, are, by definition, disjoint, i.e., p ⊆ ¬q. The closure
axiom defines whether quantification (∃) and universal (∀) constraints are
applied over a relation. The compatibility relation defines whenever two con-
cepts are characterized as compatible or not with respect to their semantic
interpretation (regardless the fact that they are possibly disjoint).

In order to illustrate the meaning of such axioms, consider the concept
description, in Table 1: Ph.D. meeting is a Meeting of at least (∃ restriction)
one Ph.D. student (restricted type of Person) with only (∀ restriction) Ph.D.
supervisors (restricted type of Person). Such meeting takes place only in the
meeting room (restricted type of Indoor area). Consider that, Alice is a Ph.D.
student and attends a Ph.D. meeting thus, the Ph.D. meeting concept repre-
sents Alice’s actual context. The Ph.D. meeting concept is disjoint but com-
patible with the Checking e-mails concept; Alice might check for her e-mails
during the meeting, while undertaking physical exercise, like jogging, cannot
be occurred during the meeting. Hence, Jogging represents an incompatible
concept with Ph.D. meeting. The compatibility relation between concepts is
interpreted as the co-occurrence of their corresponding pieces of context.

In addition, consider that, Alice is co-located with other persons in a meet-
ing room at a scheduled meeting time. Then, Alice’s context is inferred to be
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Table 1. Concepts description in DL syntax and natural language

DL syntax expression Natural language

Meeting ⊆ (Context ∩∃refersTo.(Person
∩∃locatedIn.MeetingRoom ∩ ≥2
co-located ∩∃co-located.Person) ∩
∃hasTime.MeetingTime)

Meeting represents the context of a per-
son who is located in a meeting room
with at least two persons at a scheduled
meeting time.

Ph.D. meeting ⊆ (Meeting
∩∃refersTo.(Ph.D. student
∩∃locatedIn.MeetingRoom
∩∃co-located.Supervisor
∩∀co-located.Supervisor))

Ph.D. meeting represent the meeting
context of a Ph.D. student who is co-
located at a meeting room with at least
one Ph.D. supervisor (and only Ph.D.
supervisors)

represented by the Meeting concept and not by the Ph.D. meeting concept.
That is because, the closure axiom over the relation co-located, i.e., all the co-
located persons must be Ph.D. supervisors, does not hold true in the Alice’s
actual context (see Table 1). Consequently, the reasoning process classifies
Alice’s context as a more abstract concept (Meeting) instead of Ph.D. meet-
ing. The closure axiom results in concept classification to certain taxonomies
in ontology. Concepts associated with constrained relations are more specific
than those associated with unconstrained relations. According to our example,
the co-located relation in the Meeting concept description is constrained by a
quantification restriction, while the same relation in the Ph.D. meeting con-
cept description is constrained by both restrictions (see Table 1). In this sense,
specific concepts are positioned deeper in taxonomy thus, pieces of context are
hierarchically structured, i.e., context(Ph.D. meeting) ⊆ ontext(Meeting).

3 Measuring Contextual Similarity

Context can be mapped into a qualitative conceptual representation. This
mapping results in different levels of conceptualization of the actual world
of pieces of context due to the imprecise nature of context. Levels can be
represented as a hierarchy/taxonomy of concepts. Each concept belonging
in taxonomy conveys specific information content [3]. Quantifying informa-
tion content through conceptual modeling denotes that, the more abstract
(generic) a concept the lower information content. Therefore, if there exists
a unique concept in taxonomy, i.e., there are no sub-concepts its information
content is null. The similarity measure between concepts quantifies the de-
gree of equivalent information and semantics such concepts convey. Hence,
such measure, called contextual similarity, assesses how similar two pieces of
context are and it is defined in (1).

sim : N+ ×Θ×Θ → [0, 1] (1)
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Θ in (1) is the solution space of concepts, i.e., ontology, and N+ is the set of
positive integers. n ∈ N+ is the level of structural complexity of concepts (i.e.,
composite concepts). The value of 0 denotes that the two concepts/arguments
are not similar while the value of 1 indicates that the two concepts are equiv-
alent. Consequently, the value of the similarity between pieces of context rep-
resented by concepts of n-level is the aggregate value of similarities of the
corresponding pieces of context represented by concepts of n− 1 level, n > 0.
Consider the concept p(n), q(n) ∈ Θ, where Θ is the context ontology of level
n. Then, the similarity sim(n, p(n), q(n)) is recursively calculated in (2).

sim (n, p (n) , q (n)) =
1

kn−1

kn−1∑
j=1

sim (n− 1, pj (n− 1) , qj (n− 1)) (2)

sim (n, p (n) , q (n)) =
1

n∏
i=1

ki

k1·...·kn∑
j=1

sim (0, p (0) , q (0)) (3)

The kn−1 > 0 is the number of the pieces of context pj(n−1), qj(n−1) ∈ Θj

and Θj is the jth taxonomy that describes context of level n−1. The recursive
expression (2) has the solution in (3). The value of the sim(0, p(0), q(0)) refers
to the ground similarity of the p(0) and q(0) concepts at level 0. sim (·, ·, ·) in
(3) is proposed as a generic expression of calculating similarity based on the
ground similarity of concepts. There are a lot of measurements that can be
used to calculate the ground similarity [4–7]. The following sections discuss
our proposed measure that takes into account enhanced context semantics.
From now on, the indexing of the concept level n has been left out to keep
the presentation more compact. Each concept p(n) = p is assumed to be in
an n-level taxonomy, n > 0.

3.1 Asserted Similarity Measure

Concepts are associated with transitive specialization relations (⊆) in a tax-
onomy Θ. Such relations denote that some concepts are more generic than
other, that is, p ⊆ q implies that p is more specific than q or p is-a q, with
p, q ∈ Θ. In this sense, the similarity measure among concepts affects their
corresponding positions in taxonomy Θ. Subsequently such measure depends
on the asserted position of a concept in Θ denoting the explicit knowledge of
the expert. Let U(q) denote the set of concepts that transitively include q,
that is:

U (q) = {e ∈ Θ|q ⊆ e ∨ e ≡ q} (4)

Θ is the taxonomy that contains q starting from its most abstract concept,
that is, q ∈ Θ ⇔ ∃e.{(e ⊆ q) ∨ (q ⊆ e)}. The most abstract a concept in Θ
is the one and only concept that is disjoint with any other concept of different
taxonomy in the ontology, that is a ⊆ ¬b, a ∈ Θi and b ∈ Θj with Θi �= Θj .
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We call the cardinality of U(q), i.e., |U(q)|, as the support of the q concept,
sup(q). The support of q denotes the piece of information q conveys according
to its position in Θ. The deeper q in Θ is the more the information q conveys.

The possible relative position of p and q belonging in taxonomy Θ is de-
picted in Fig. 2. It is possible that such concepts be included by common con-
cepts. We define as last common concept of the p and q concepts, lcc(p, q) = ϕ,
the last concept ϕ, starting from the root of Θ, that includes both p and q
and holds that: (q ⊆ ϕ) ∧ (p ⊆ ϕ) ∧ ¬(U(p) ⊆ U(q) ∨ U(q) ⊆ U(p)). Hence,
ϕ has support sup(ϕ) = |U(p) ∩ U(q)| and then, sup(p) = m + sup(ϕ) is
the support of p, with m = |U(p)\U(ϕ)|, and sup(q) = n + sup(ϕ) is the
support of q, with n = |U(q)\U(ϕ)|. The support of ϕ affects significantly
the asserted similarity between p and q. That is because, the higher the value
of sup(ϕ) the higher the common concepts that include p and q. Nonethe-
less, the similarity between p and q is affected by the intermediate concepts
I(q) ∈ Θ, with I(q) = {a ∈ Θ|(q ⊆ a) ∧ (a ⊆ ϕ)} and I(p) ∈ Θ, with
I(p) = {a ∈ Θ|(p ⊆ a) ∧ (a ⊆ ϕ)} among p and q, respectively (see Fig. 2d).
The more the intermediate concepts lie among p and q the less similar q is
with p. Therefore, in the Feature-Based Model defined in [5], the authors
claimed that the similarity value is not only the result of common features

Fig. 2. Possible positions of q and p concepts in taxonomy Θ
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but, also, the result of the differences between the two concepts. Evidently,
the intermediate concepts have to be taken into account in calculating the
asserted similarity.

Asserted Taxonomical Similarity

We adopt the ratio model of Tversky method [7] and define the asserted
taxonomical similarity simT (q, p) of two concepts q and p belonging to the
Θ taxonomy in (5).

simT (q, p) =
sup (lcc (q, p))

sup (lcc (q, p)) + a ·m + β · n (5)

The quantities m and n denote the support of the intermediate con-
cepts of p and q, respectively, that is, m = |U(p)\U(lcc(q, p))| and
n = |U(q)\U(lcc(q, p))|. The factors α, β refer to the weights for com-
mon and different features respectively. These factors refer to the definition
of an asymmetric measure but, we assume that any similarity measure is pro-
duced by symmetric measurement, hence, α + β = 1. The term α, according
to [5], assumes values in the range [0, 0.5]. The value of 0 means that the
differences of q with respect to p are not sufficient in order to conclude that
they are taxonomically similar, and the value of 0.5 means that the differences
are necessary and sufficient to conclude such assumption. Hence, a can be
determined as the fraction of the minimum length of the path from p to q in
Θ as defined in (6).

α =
min (m,n)

m + n
(6)

The asserted taxonomical similarity in (5) depends on the supports of
p and q, thus, its values exhibit different behaviour based on the relative
positions of p and q with respect to their lcc(p, q) = ϕ. Specifically, the p ⊆
ϕ ⊆ ψ inclusion denotes that the knowledge about ϕ includes the knowledge
about ψ (i.e., ϕ ⇒ ψ) without including any knowledge about p. Consider that
the concept p ∈ Θ is the asserted representation of a user context. Let the
concept q ∈ Θ be the actual representation of the current context. The actual
representation of the unclassified context denotes the aggregation of those
local pieces of context that represent the information content for q. Then, q
can be classified according to the following cases:

1. q is a super-concept of p, i.e., p ⊆ q
2. q is equal to p, i.e., p ≡ q
3. q is a sub-concept of p, i.e., q ⊆ p
4. q and p are sub-concepts of their lcc(p, q) = ϕ

The knowledge about q indicates the degree of belief that the current
context is an instance of the q concept. The (non-negative) degree of belief
(∈ [0, 1]) is monotonic over the support of a concept that is, if p ⊆ ϕ ⊆ ψ then
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belief (q, p) ≤ belief(q, ϕ) ≤ belief (q, ψ) and sup(q) ≥ sup(ϕ) ≥ sup(ψ) for
the actual concept q ∈ Θ. Such implication denotes that, the more knowledge
about q, the more belief is accumulated to any super-concept of q. Evidently,
the asserted taxonomical similarity between p and q represents the belief that
“p is q”, that is, belief(q, p) = simT (q, p). In this sense, the relative position
of p and q in Θ results in diverse attributes of such belief.

In the first case (Fig. 2a), q can be classified as a more generic concept
than p, that is, p implies q. In this sense, n = 0. This means that, the support
of q is sup(q) = sup(lcc(q, p)) and the taxonomical similarity is defined in
(7) with a = 1 and m = sup(p)− sup(q). Hence, if sup(q) approaches sup(p),
which means that q approaches p then, the belief that “q is p” is a linearly
monotonically increasing function over the support of q and a hyperbolically
decreasing function over the support of p as illustrated in Fig. 3a.

simT (q, p) =
sup (q)
sup (p)

(7)

simT (q, p) =
sup (p)
sup (q)

(8)

In the second case (Fig 2c), q is classified as p, thus, the belief that “q is p”
is 1 independently to their support and to the support of the last common
concept, sup(lcc(q, p)). In that case, sup(q) = sup(p) in (8).

In the third case (Fig 2b), q is classified as more specific concept than
p, i.e., m = 0 (Fig. 3a.). In this sense, q implies p, to the extend that:
the greater the depth of q with respect to p the lower the similarity be-
tween p and q. Hence, the belief that “q is p” is a monotonically decreas-
ing function over the support of q. The taxonomical similarity is defined in
(8), with β = 1 and n = sup(q) − sup(p). The decreasing factor sup(p) in
(8) denotes that the more support of p the lower the decreasing rate. More-
over, simT (p, q) decreases hyperbolically as q is a sub-concept of p. One can
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positions of q and p concepts is taxonomy Θ
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conclude that, lim
(sup(q)−sup(p))→∞

simT (p, q) = 0. Figure 3a depicts the behav-

iour of simT (p, q) for different values of sup(p). A greater value of sup(p) de-
notes that p represents more specific concept thus, belief(q ⊆ p) > belief(q ⊆
e) for each e ∈ Θ with q ⊆ e ⊆ p.

An interesting analysis is presented for the fourth case in which there exists
a ϕ = lcc(p, q) with support sup(ϕ). In that case, the simT (p, q) is calculated
in (5). The belief that “q is p” increases as more intermediate concepts I(q)
are accumulated between q and ϕ. There is a maximum value of that belief,
denoting the maximum value of the similarity between p and q. This value
is assumed when there is an a ∈ I(q) concept whose sup(a) = n/2, and
n = sup(q)−sup(ϕ). As more intermediate concepts are accumulated between
q and ϕ then, the belief that q is p monotonically decreases. That is because:
for a support of q ∈ [sup(ϕ), sup(a)], q concept is quite similar to p because
it is more abstract than p with respect to ϕ, but on the other hand not so
much dissimilar to p. For a support of q ∈ [sup(a), n], q is more specific
than p with respect to ϕ thus, p and q are not so similar, instead, they are
sibling concepts. Hence, the maximum similarity between p and q is achieved
when q is positioned between ϕ, and the sibling concept b ∈ I(p), such that,
sup(p) < sup(b) < sup(ϕ).

Moreover, if sup(ϕ) = 1 and m = n, i.e., the two concepts are siblings
with the minimum support then, their similarity is 0.5. If the support sup(ϕ)
increases with m = n, then p is also sibling to q but they seem more similar
than the previous case (where sup(ϕ) = 1) because they share more common
super-concepts, i.e., they have greater support for the last common concept.
Finally, in case where m = 1 then, sim(p, q) decreases with the support of
q, as depicted in Fig. 3b. That is because, there is no intermediate concept
b ∈ I(p).

Asserted Taxonomical Similarity Based on the Disjoint Axiom

The disjoint axiom has to be taken into account in measuring asserted taxo-
nomical similarity. If two concepts p and q are defined as disjoint, i.e., p ⊆ ¬q,
then, one could claim that it is inappropriate to measure their similarity with-
out taking into account that axiom. When the disjoint axiom is applied to p
and q concepts, the subsumed concepts of p and q, respectively, are also con-
sidered as disjoint with each other. If the direct super-concepts of p and q
are not declared as disjoint, but their indirect super-concepts do so, then, one
has to take into account the position (depth) of such indirect super-concepts
inside the taxonomy. Specifically, the position in taxonomy, in which the dis-
joint axiom is applied, generates different taxonomical measurements. Intu-
itively, simT appears to increase whenever the disjoint axiom is applied to
nearer super-concepts more than distant indirect super-concepts. simTD re-
vises simT by being aware of the disjoint axiom, since it subtracts the pro-
portion of simT (q, p) with respect to simT (qF , pF ), where qF and pF are
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Fig. 4. The behavior of the asserted taxonomical similarity measure based on the
disjoint axiom

the first disjoint descendants of the q and p, qF = fdd(q) and pF = fdd(p),
respectively (see Fig. 4a). simTD is defined in (9).

simTD (q, p) = simT (q, p) · (1− |simT (q, p)− simT (fdd (q) , fdd (p))|) (9)

It is worth noting that, simTD cannot be measured in either RDF or RDF(S)
representation schemes because they do not support the semantics of the
disjoint axiom, contrary to OWL-DL.

As it is illustrated in Fig. 4a, there is a significant differentiation of simTD

for diverse values of m = sup(p) − sup(lcc(q, p)). simTD increases as m is
reduced. This means that, the longer the distance m between concepts p, q
and the last common concept, lcc(q, p), the smaller the overall value of simTD

w.r.t disjoint axiom. Let y be the height between the level of p, q and the level
of the first disjoint descendants, pF , qF , respectively (see Fig. 4a). As the value
of y grows, i.e., the distance between the two levels increases, then the value of
simTD decreases. That is because, the disjoint axiom is applied in higher level
thus the last common concept is located higher in the taxonomy. It is worth
noting that, for large values of m, simT and simTD assume same values.

Another dimension that has to be explored is how the support of the last
common concept, sup(lcc(p, q)) affects the values of simT and simTD. In this
case, the larger the sup(lcc(p, q)) is, the closer of simT and simTD become.
In Fig. 4b, smaller values of sup(lcc(p, q)) result in broader difference between
simT and simTD, in contrast to larger values of sup(lcc(p, q)). The former
case denotes less similar concepts w.r.t., common super-concepts, thus, the
application of the disjoint axiom plays a very significant role in taxonomical
similarity. The latter case denotes very much similar concepts w.r.t., common
super-concepts, thus, the impact of the disjoint axiom is negligible.
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Fig. 5. The associated concepts of the q and p concepts

Asserted Relational Similarity

The relational similarity simR between p and q is calculated by the asserted
taxonomical similarity simTD of their associated concepts with respect to
their common relations. A concept a is defined as the associated concept
of the p concept through the binary relation r when r(p, a). Then, the set
A(p, r) of the associated concepts of p through the relation r is defined as:
A(p, r) = {a|r(p, a)} (see Fig. 5). Moreover, the r and t relations can be
hierarchically structured denoting that t is a specialization of r, i.e., t ⊆ r.
Hence, two relations can be considered as similar w.r.t., a relations-taxonomy.
The similarity value between r and t is denoted as simT (r, t). In case r = t
then simT (r, t) = 1; otherwise simT (r, t) derives from (5). The asserted
relational similarity simR between p and q for a given relation r is defined
in (10).

simR (q, p, r)

=

∑
a∈A(r,p)

max (min {simTD(a, b), simT (r, t)} |b ∈ A(t, q) ∧ t ⊆ r)

max (|A(r, p)| , |A(t, q)|) (10)

The asserted (overall) similarity, which derives from the asserted taxo-
nomical (based on the disjoint axiom) and relational similarity, is a sum as
provided in (11).

similarity (q, p) =
1
2
simTD (q, p) +

1
2|Λ|

∑
r∈Λ

simR(q, p, r) (11)

The set Λ in (11) is the set of all common most abstract relations of p and q.
Such similarity is based only on semantics that asserted concepts convey
within taxonomies, i.e., taxonomy of concepts, taxonomy of relations and
disjoint axiom.

3.2 Analogy Measure

The asserted similarity between q and p concepts, similarity(q, p) is meaning-
ful once such concepts are in the same taxonomy, i.e., p, q ∈ Θ and their
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associated concepts belong to different taxonomies. Expressing p and q con-
cepts in an Open World Assumption (OWA) [8] results in an adequate metric
for measuring the similarity between p and q. Specifically, the knowledge that
q → p can be inferred but, the knowledge that ¬q → ¬p is not implicitly in-
ferred. On the other hand, negation is assumed as failure by expressing q and
p concepts in a Closed World Assumption (CWA) [8]. DLs descriptions are ex-
pressed through an OWA thus, it is very important to take into consideration
the several restrictions of the OWA over such descriptions.

The closure axiom can be expressed as the application of quantification
(∃) and universal (∀) restrictions over relations. Such axiom is applied on a
relation r linking a concept p with a concept a, that is, (i) for a ∈ Θ holds
that ∃a.r(p, a), i.e., p is restricted to associate with at least one a through r,
and (ii) for a ∈ Θ holds that if ∀a.r(p, a) then a ∈ A(p), i.e., p is restricted to
associate with one (not necessarily) a belonging to the set of the associated
concepts of p through r. If both restrictions are applied on r, then, the clo-
sure axiom for the r relation, i.e., ∃a.r(p, a)∧∀a.r(p, a) with a ∈ A(p), holds
true. Concepts p and q regardless their asserted similarity, might be similar in
the sense that, same restrictions are asserted over their relations. This means
that, p concept is analogous to q concept due to same restrictions over com-
mon relations. Two concepts might be very similar regarding their asserted
similarity but not quite analogous with respect to the closure axiom. For in-
stance, p concept constrains its relations only with quantification restrictions,
while q constrains the same relations with both types of restrictions. In that
case, albeit such concepts are associated with same relations, it holds that, the
q concept is more specific than the p concept. Hence, the implication q ⇒ p
holds true after the DL reasoning process.

We define as closure concept, clc(p) ∈ Θ, of a concept p ∈ Θ, the concept
that constraints all relations with both types of restrictions. Let a ∈ A(p, t)
and the t relation be constrained either by quantification or universal restric-
tions. Then, clc(p) applies both quantification and universal restrictions to
the most abstract relation r, i.e., t ⊆ r (see Fig. 6). Consequently, for each
concept p ∈ Θ, there is a closure concept clc(p) ∈ Θ, that is, clc(p) ⇒ p.
The distance dx between p and clc(p) for the restriction x ∈ {∃, ∀} is defined
in (12).

dx (p, clc (p)) = 1− min
t|r⊇t

(max {simT (t, r) , simTD (a, b)} |b ⊇ a)) (12)

Fig. 6. The closure concept clc(q) for the q concept
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The concept b ∈ A(pcl(c), r) is the associated concept of the closure concept
of p through the most abstract relation r. Hence, the analogy between q and
p is calculated using the distance of q and p from their corresponding closure
concepts and is defined in (13). The analogy measure assumes value in the
interval [0,1]. The value of 0 means analogous DL descriptions and 1 means
non-analogous descriptions with respect to the closure axiom.

analogy (q, p) =
√ ∑

x∈{∃,∀}
(dx (p, clc (p))− dx (q, clc (q)))2 (13)

3.3 Affinity Measure

It is very important to refer to a more consolidated and holistic measure for
judging both the similarity and analogy of two concepts. We define the fuzzy
measure affinity between two concepts, which derives from the fuzzy inference
of the values of the asserted similarity and the analogy for those concepts. The
affinity measure depends to some degree on the analogy between two descrip-
tions and to some degree on the asserted similarity of such descriptions. Let
the asserted similarity and analogy between p and q concepts represent fuzzy
variables. Then, the fuzzy values for the asserted similarity variable are those
in Fig. 7. The corresponding fuzzy sets are structural, semi-structural, non-
structural. Such values depend on the position of p and q concepts in the
taxonomy and their relational similarity. The higher the value of similarity
the more that similarity depends on the hierarchical structure of concepts in
the taxonomy. Moreover, the fuzzy values for the analogy variable are those
in Fig. 7. The corresponding fuzzy sets are analogous and non-analogous.
An analogous fuzzy value for the analogy between p and q denotes that, the
common relations of p and q are equivalently constrained by both types of
restrictions. Consider also the fuzzy variable affinity between p and q con-
cept, affinity(p, q) ∈ [0, 1], with fuzzy values: high, medium, low. High affinity
means that the asserted similarity is necessary condition that p and q con-
cepts are similar. Medium affinity means that both the asserted similarity and
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Fig. 7. Fuzzy values for the fuzzy variables: analogy, similarity and affinity measures
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Table 2. Fuzzy inference rules for the affinity measure between q and p concepts

if similarity of q and p is structural implies affinity of q and p is high
if similarity of q and p is somewhat structural and q is analogous to p
implies affinity of q and p is high
if similarity of q and p is semi-structural and q is analogous to p implies
affinity of q and p is medium
if similarity of q and p is non-structural and q is analogous to p implies
affinity of q and p is low
If similarity of q and p is structural and q is non-analogous to p implies
affinity is medium

the analogy are equally considered as necessary conditions in order to outline
the similarity between p and q. Finally, low affinity means that the analogy
is regarded as being necessary condition, but not sufficient, for judging the
similarity between p and q.

Therefore, the qualitative meaning of the affinity measure is the following:
whenever the p and q concepts are very close in analogy (i.e., q is analogous
to p, analogy(q, p) ∼= 0), it does not strongly imply that they refer to rather
similar pieces of context. On the other hand, whenever q and p are similar with
respect to the similarity measure (i.e., similarity(q, p) ∼= 1), then, there is a
strong belief that they are similar, not only as analogous concepts, but also,
as similar concepts referring to equivalent pieces of context. Consequently the
affinity measure of two concepts is the fuzzy implication derived from a set
of fuzzy rules associating the asserted similarity with the analogy of those
concepts. A subset of the representative fuzzy rules, including concentration
(e.g., very) and dilution (e.g., somewhat) operators, is depicted in Table 2.

4 Reasoning about Contextual Similarity

Reasoning about similar pieces of context means that, one has to reason about
the asserted similarity and analogy measures. A concept of n-level represents
a piece of context. In the following, we refer to the terms context and concept
interchangeably according to the meaning. Pieces of context might relate each
other through compatibility relations. Moreover, they could be declared as
disjoint, but is not implied that, they are not compatible for a given world.
For instance, the context a = user is attending a meeting is defined as disjoint
with the context b = user is checking her e-mails, but these pieces of context
can co-occur. Evidently, the affinity(a,b) measure seems to be very low, but
such pieces of context could appear simultaneously. One should be aware of
such relations, and, then, ought to reason about similar pieces of context in
order to retrieve, not only relevant, but also compatible pieces of context.

Each concept pj ∈ Θ, which represents an asserted piece of context, is
retrieved from the taxonomy Θ as possibly relevant and compatible with the
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unclassified concept q. q represents the actual context that has to be classified
to one or more asserted concepts. However, the system could infer that, the
most relevant concept p, i.e., that concept which assumes the highest affinity
value with q; p estimates the actual context q in (14).

p = arg max
pj∈Θ

(affinity (q, pj)) (14)

Nonetheless, such imprecise reasoning could be revised since compatibility
relations among concepts have to be taken into consideration. In that sense,
we deal with relevant pieces of context, R, and compatible pieces of context, C,
w.r.t., affinity measure and compatibility relations. Hence, the system returns
pieces of context from the R ∩C set.

Consider the position of the classified concept q, after the classification of
the OWA DL reasoner RACER [9] (see Fig. 1). q is classified as a sub-concept
of the m = Meeting concept and, thus, disjoint with any other concept.
Such classification does not allow q to be a sub-concept of the c = Checking
e-mails concept, while part of q description seems similar to the latter concept.
Since c and m concepts are declared as disjoint, i.e., c ⊆ ¬m, then, q cannot
be a sub-concept of the former one, i.e., ¬(q ⊆ c). In other words, q does not
extend two disjoint concepts. As a first solution, it would be better to describe
the c concept with more generic concepts, hoping that q ⊆ c. This is not a
good solution because the Θ taxonomy still contains very abstract concept
descriptions loosing the specificity of the context representation. As a second
solution, one could express q using even more specific concepts than those of
the c description, hoping that q ⊆ c. Such idea sounds viable enough but two
difficulties are to be addressed. Firstly, knowing exactly the actual context,
i.e., q, compared with the idealistic context description c in Θ, it seems to
be impossible and, secondly, even though c is considered as specific, it is also
possible that Θ maintains more specific concepts than c.

Furthermore, by using default OWA DL reasoning, there is no information
about the degree of inclusion. The most similar concept to q is p = Ph.D.
Meeting, which is a Meeting, i.e., p ⊆ m, something that verifies the results
of our similarity measure (see Fig. 1). In addition, q is similar to c with a
value of 0.5723 and q is disjoint with the latter concept, i.e., c ⊆ ¬q, which
is undoubtedly true. On the other hand, the default DL reasoning could not
take into account the compatibility relations among pieces of context. The
following section copes with reasoning about compatible pieces of context.

4.1 Reasoning about Compatible Pieces of Context

The affinity value for q and m is not as high as that for any sub-concept a of
m, i.e., affinity(q, m) < affinity(q, a) with a ⊆ m. Specifically, q seems more
similar to p rather than to m, i.e., affinity(q, p) > affinity(q, m), because m
is a more abstract description, thus, providing less information. In contrast,
q is less similar to the most specific concept, sp = Strict Ph.D. meeting. The
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Fig. 8. The distribution of similarity measures along with the support

affinity value of any super-concept of q is lower than that of any sub-concept
of q. Figure 8 depicts, the distribution of the affinity measure of the q along
with the sup(q), w.r.t., concepts of the taxonomy of q. The affinity value of
the most specific concept, i.e., the deepest concept in the taxonomy, never
drops below the minimum affinity value, which is that of the most abstract
concept of the taxonomy (e.g., Meeting concept).

The fact that q is similar to other concepts not belonging to the Meeting
taxonomy (e.g., coffee break, reading, and checking e-mails pieces of context),
is expected since there is no awareness of the semantics related to compatibility
relations among concepts. The similarity measurement may result in a list of
relevant and compatible or incompatible pieces of context (e.g., Meeting and
Coffee break).

4.2 Reasoning about Intra-Taxonomy Contexts

The affinity measure leads to those pieces of context that the actual context is
classified and, quantitatively, to the degree of belief. Let p be the most relevant
context to q, i.e., p = arg max

pj∈Θ
(affinity (q, pj)), and let ϕ be the most generic

concept that includes p, that is, p ⊆ ϕ. Then, we call intra-taxonomy concept
e, the concept that belongs to the same taxonomy with p, i.e., e ∈ Θ∧ p ∈ Θ.
It is worth noting that, not all intra-taxonomy concepts e ∈ Θ are considered
as relevant to q. However, one could take into consideration the behavior of
the affinity measure (see Fig. 8). An intra-taxonomy concept e ∈ Θ is relevant
to q whenever the affinity measure is greater than that of the most abstract
concept ϕ but, lower than that of the most relevant, p. Hence, e ∈ Θ is relevant
to q when the statement in (15) holds true.

affinity(q, ϕ) < affinity(q, e) < affinity(q, p) with p ⊆ e ⊆ ϕ (15)
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In our case, affinity(q, ϕ) < affinity(q, mp) < affinity(q, p) with p ⊆ mp ⊆
q ⊆ ϕ and mp = Meeting with Prof.(intra-taxonomy concept), p = Ph.D.
meeting, and ϕ = Meeting. On the other hand, any intra-taxonomy concept
e ∈ Θ which is more specific than the most relevant concept, i.e., e ⊆ p,
assumes lower affinity value that that of p. That is because, e is more specific
than p and thus, it is less similar to q since e ⊆ p ⊆ q. Specifically, if it
holds true that belief(p ⊆ q) > belief(e ⊆ p ⊆ q) then, it also holds true
that, belief(e ⊆ q) < belief(p ⊆ q), in other words, the concept e ∈ Θ is
not believed to be relevant to q. According to our example affinity(q, sp) <
affinity(q, p) thus, sp is not retrieved as a relevant context to q, with sp =
Strict Ph.D. Meeting.

Consider those intra-taxonomy concepts a ∈ Θ, which belong to a different
sub-taxonomy of that of the most relevant concept p, i.e., for any a ∈ Θ
there exists a concept b such that, b = lcc(a, p). Hence, the only accepted
relevant intra-taxonomy concept a is the one, which the statement in (16)
holds true for.

(p ⊆ lcc (a, p) ⊆ q) ∧
(

a = arg max
aj∈Θ

(affinity (q, aj))
)

(16)

In our example, fm = Formal meeting is retrieved as a relevant intra-
taxonomy concept with m = lcc(p, fm), m = Meeting. Hence, the accepted
relevant intra-taxonomy concepts, for which the statements (15) and (16) hold
true, are the dash-line encircled concepts in Fig. 1.

According to the default DL reasoning process, the only retrieved relevant
concept that represents the actual context q is the m = Meeting concept.
Moreover, by comparing our results with those of the DL Matchmaker algo-
rithm [10] we concluded that such algorithm counts all concepts that include
m as relevant. Specifically, such algorithm considers the concept e ∈ Θ as
relevant to q such that, e = lcc(q, m) with sup(q)− sup(e) = 1 (direct super-
concept). Nonetheless, DL Matchmaker depends only on the disjoint axiom
and does not take into account compatibility relations. In the worst case, since
the Checking E-mails concept would be compatible with the Meeting concept,
the DL Matchmaker would not consider the former as relevant to q, (the Meet-
ing concept is asserted as disjoint with every sibling concept). Compatibility
among pieces of context is a special kind of relation with, inevitably, great
impact on reasoning and consequently on retrieving relevant and compatible
pieces of context.

5 Experimental Evaluation

We have evaluated the proposed contextual similarity and reasoning method
by using abstract and specific ontologies. We evaluate the generated results
using the RDF, RDF(S), and OWL-DL knowledge representations with re-
spect to the disjoint axiom. We experiment with the behavior of our method
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using a relations-taxonomy and the involvement of the analogy in similarity
reasoning. The proposed method is evaluated with respect to information re-
trieval metrics (Retrieval Status Values (RSV)). We use the standard RSVs,
precision and recall [11], in different forms. Specifically, recall R is defined as
the percentage of the number of retrieved and relevant and compatible con-
cepts over the number of relevant and compatible concepts in the KB, and,
precision P as the percentage of the number of retrieved and relevant and
compatible concepts over the number of retrieved and compatible concepts. In
addition the F-Measure (F ) [11] is used for giving equal weight to R and P ,
that is F = 2 · P ·R · (P + R)−1.

The reasoning process results in a set of relevant and compatible concepts
with q context query. Figure 9a shows the P, R, and F quantities for a KB
expressed in the RDF(S) scheme. The number on the horizontal axis expresses
the first percentage relevance ranked concepts of the result set for that query.
Such number expresses the percentage size of the result set of retrieved con-
cepts, all of which are relevant and compatible ranked and listed in descending
order according to the affinity value against q. The overall trend of precision
is decreasing since the result set is constantly growing until its size reaches
the total number of the concepts in the KB.
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Figure 9b shows F using both RDF(S) and RDF representations. Obvi-
ously, the expressiveness in the former representation scheme assumes more
precise results w.r.t., relevance ranking. Figure 9c depicts P, and F with re-
spect to OWL-DL representation using the disjoint axiom. Evidently, the
more semantic the expressions are, the more precise knowledge retrieval is
achieved, since the generalization relations and the disjoint axiom are taken
into account.

Figure 9d depicts P vs. R using OWL-DL representation using both the
asserted similarity and affinity measures. Evidently, when analogy is taken
into account in reasoning about contextual similarity, then, one obtains more
precise results.

6 Related Work

The most similarity-based methods are applied on context models represented
either by logic frames or objects. In [12], the author dealt with recognizing
structural information from Web pages, by exploiting similarity measures over
user queries. In [13], the authors discussed how to use semantic similarity al-
gorithms in order to retrieve similar lexical pieces of context from certain
lexical taxonomies. The author in [14] exploited a measuring distance over
the WordNet by retrieving semantically similar meanings. In addition, simi-
larity assessment methods and metrics used in the case-based reasoning and
contextual retrieval are reported in [15].

Special interest is focused on the knowledge retrieval process dealing with
highly changing contextual information. Retrieving context from ontologies
appears to be a specific knowledge retrieval process. The model in [16] captures
knowledge from user context (e.g., user patterns, profiles and preferences).
Moreover, the authors in [17] discussed a content-based similarity-matching al-
gorithm, which exploits the user preferences in context discovery. The authors
in [18] discuss a probabilistic approach that combines logic and uncertainty
theory for retrieving user context. The system, as proposed in [19], monitors
user tasks and retrieves task-based user contexts. The authors in [20] proposed
an algorithm that retrieves and learns user interests in the Web. Such algo-
rithm learns the dynamics of the user interests through positive and negative
relevance feedback.

7 Conclusions

In this article, we propose a method for reasoning about contextual infor-
mation through similarity and analogical reasoning. The current work repre-
sents a method for knowledge retrieval based on context semantics by using
crisp and approximate reasoning techniques over heterogeneous information
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resources. Context is represented as hierarchically structured concepts. We
use the expressiveness of the DLs expressed using OWL-DL ontologies.

The proposed method retrieves the most relevant pieces of context given a
context query based on similarity measures. Special focus has been given to the
disjoint and closure axioms, and symmetric compatibility relations enriching
context semantics. Fuzzy analogical reasoning revises the classical similarity
metric denoting the significance of restrictions over contextual representations.
Moreover, our method encounters not only relevant pieces of context, but
also compatible ones. Evaluation experiments confirm that the semantic-based
reasoning provides satisfactory results. That is because semantics is taken
into consideration for retrieving relevant and compatible pieces of context.
The arisen benefit of the proposed contextual similarity measure is based on
exploiting semantics.
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Summary. In the first part of the chapter we show the three most important
axiomatizations of the concept of subsethood measure. Then we present the reasons
why we focus on the definition given by V. Young. Next we study a method for
constructing said measures and we analyze the conditions in which they satisfy the
axioms of Sinha and Dougherty. Afterwards we study the way of obtaining fuzzy
entropies that fulfill the valuation property from said subsethood measures.

1 Introduction

A fuzzy subsethood measure (also called a measure of inclusion) is a relation
between fuzzy sets A and B, which indicates the degree to which A is contained
in (is a subset of) B.

Traditionally, fuzzy set inclusion is defined according to Zadeh’s [1] original
proposal. For A and B fuzzy sets in a universe X he defined:

A ≤ B if and only if for all x ∈ X, µA(x) ≤ µB(x).

For many researchers, this definition is too rigid and it does not do justice
to the spirit of the Theory of Fuzzy Sets. Bandler and Kohout [2] call the
definition of inclusion by Zadeh an unconscious step backwards in the realm
of dichotomy. In 1980 these authors suggest the following definition: Consider
two fuzzy sets A and B in a universe X, then the degree to which A is a
subset of B is given by:

Infx∈Xj(µA(x), µB(x)),

where j : [0, 1]2 → [0, 1] is such that j(0, 0) = j(0, 1) = j(1, 1) = 1 and
j(1, 0) = 0.

This fact has led many authors to study functions:

σ : F(X )×F(X ) →[0, 1],
H. Bustince et al.: A Method for Constructing V. Young’s Fuzzy Subsethood Measures and
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(where F(X) represents the class of fuzzy sets in the universe X), such that
σ(A,B) shows how much A is contained in B.

Obviously, we must impose on σ certain conditions, (axioms), in order to
achieve a good representation of the fuzzy subsethood measure.

Historically, in fuzzy literature, three axiomatizations have been given for
fuzzy subsethood measures. The first one was given by Kitainik [3] in 1987.
Later, in 1993 Sinha and Dougherty [4] give a collection of nine axioms, plus
three additional ones. Finally, Young [5] in 1996 proposes four axioms for
these measures. In 1999 Fan et al. in [6] modified one of Young’s axioms.

1.1 Kitainik’s Axioms

Generally speaking for this author, a fuzzy subsethood measure is considered
as a fuzzy binary relation on the set of all fuzzy subsets F(X) of X, that
satisfies the four following axioms:
(K1) σ(A,B) = σ(Bc, Ac) for all A,B ∈ F(X);
(K2) σ(A,B ∧ C) = ∧{σ(A,B), σ(A,C)} for all A,B,C ∈ F(X);
(K3) σ(A,B) = σ(S(A), S(B)) for all A,B ∈ F(X), where the fuzzy set S(A)
is defined as µS(A)(xi) = µA(s(xi)) with a one-to-one mapping s : X → X;
(K4) Applying σ to crisp sets, it coincides with the usual set inclusion.

The previous axiomatization was motivated by the following inter-relations
between crisp sets:

A ⊆ B ⇔ Bc ⊆ Ac

A ⊆ (B ∩ C) ⇔ (A ⊆ B) ∧ (A ⊆ C)

A ⊆ B ⇔ S(A) ⊆ S(B).

Dubois and Prade in [7, 8] establish that the binary fuzzy relation σ can also
be interpreted as an inclusion grade, (the interpretation of S for crisp sets
is given in [3, 8]). Due to this, we will constantly speak of fuzzy subsethood
measure (or inclusion grade) instead of binary fuzzy relation.

Fodor and Yager [8,9], from the work of Kitainik, have studied the relation-
ship existing between Kitainik’s fuzzy subsethood measures and implication
operators, obtaining the following theorem.

Theorem 1. A F(X )× F (X) →[0, 1] mapping σ satisfies (K1)− (K4) if and
only if there exists a contrapositive implication operator (in Fodor’s sense)
such that, for all A and B in F(X):

σ(A,B) = Infn
i=1I(µA(xi), µB(xi)).

Therefore, we deduce from this theorem that the only fuzzy subsethood mea-
sure admitted in the sense of Kitainik, belongs to the group Bandler and
Kohaut [2].

Kitainik also proves that there is no fuzzy subsethood measure satisfying
at the same time the properties: reflexive, transitive and continuity. These
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properties have been much studied by different authors, as for example: Fodor
and Yager [8], Kehagias and Konstantinidou [10]. In [11] Willmott studies
the transitiveness of the measures of inclusion. This property has also been
analyzed by Kundu in 2000 [12], etc. We will focus on the fulfillment of certain
axioms and leave the study of these properties for future studies.

1.2 Sinha and Dougherty’s Axioms

These authors [4] present nine axioms for the fuzzy subsethood measures.
They also present three optional axioms in addition to these nine. These last
three are given as optional, however, they maintain that for certain applica-
tions, they result more appropriate than some of the previous nine.
Axiom 1. σ(A,B) = 1 if and only if A ≤ B in Zadeh’s sense.
Axiom 2. σ(A,B) = 0 if and only if Ker(A)∩(supp(B))c �= 0, where Ker(A) =
{x ∈ X|µA(x) = 1} and supp(B) = {x ∈ X|µB(x) > 0}; that is, σ(A,B) = 0
if and only if exist x ∈ X such that µA(x) = 1 and µB(x) = 0.
Axiom 3. If B ≤ C, then σ(A,B) ≤ σ(A,C). In other words, the indicator is
a non-decreasing function in the second variable.
Axiom 4. If B ≤ C, then σ(C,A) ≤ σ(B,A). In other words, the indicator is
a decreasing function in the first variable.
Axiom 5. σ(A,B) = σ[S(A), S(B)]. If we consider any one-to-one mapping
s : X → X. The unary shift operation is induced by s : S : [0, 1]X → [0, 1]X

such that µS(A)(x) = µA[s(x)]. (That is, (K3)).
Axiom 6. σ(A,B) = σ(Bc, Ac). (That is, (K1)).
Axiom 7. σ(B ∨ C,A) = ∧{σ(B,A), σ(C,A)} for all A,B,C ∈ F(X).
Axiom 8. σ(A,B ∧ C) = ∧{σ(A,B), σ(A,C)} for all A,B,C ∈ F(X). (That
is, (K2)).
Axiom 9. σ(A,B ∨ C) ≥ ∨{σ(A,B), σ(A,C)} for all A,B,C ∈ F(X).

Additional axioms
Axiom 10. σ(A,B) + σ(A,Bc) ≥ 1.
Axiom 11. If A is a refinement of B, then we require that

σ(A ∨Ac, A ∧Ac) ≤ σ(B ∨Bc, B ∧Bc),

Ac being the complementary of the fuzzy set A with respect to the fuzzy
negation c, that is, Ac = {(x, µAc

(xi) = c(µA(xi)))|x ∈ X}.
Axiom 12. If A is weakly included in B, then σ(A,B) ≥ 1

2 .

Sinha and Dougherty say on their paper [4] that the reason why they
impose the axioms 1 and 2 is the following: if A,B are crisp, then σ(A,B) ∈
{0, 1}. Therefore, the fuzzy subsethood measure is an extension of the concept
of crisp inclusion.

Later on, Frago [13] proves that Axiom 9 is a consequence of Axiom
3. Moreover, Kitainik proves that if a fuzzy subsethood measure fulfills
(K1)− (K4), then it automatically satisfies Axioms 3 and 4 of Sinha and
Dougherty. Evidently, it also satisfies Axioms 5, 6 and 8.
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Due to all this, we get that Kitainik’s axioms are equivalent to Sinha and
Dougherty’s with the only exception of Axioms 1 and 2, which Kitainik only
imposes for non-fuzzy sets.

1.3 V. Young’s Definition

Young [5] makes the following considerations about the previous axiomatiza-
tion:

(1) From her point of view it is not fundamental to fulfill:
if A and B are crisp, then σ(A,B) ∈ {0, 1}.

She supports it saying that in fuzzy literature there are fuzzy subsethood
measures widely used in different applications which do not fulfill that
property. For example, the grade of inclusion of Goguen [14,15]:

σG(A,B) =
1
n

n∑
i=1

∧(1, 1− µA(xi) + µB(xi)).

In this example it is easy to see the fact that if the sets considered are
crisp, then σ(A,B) ∈ [0, 1]. This does not mean that this measure will not
give us valid information when the sets are non fuzzy. In fact, if the sets
are crisp and σG(A,B) = p

n , (n being the cardinal of X), then n− p gives
us the number of elements which belong to A and not to B.

(2) Axiom 2 is too harsh. This axiom allows the values of A and B at one
point to make σ(A,B) equal 0. For example, if µA(x) ≤ µB(x) for all
x except for one point x0, at which µA(x0) = 1 and µB(x0) = 0, then
σ(A,B) = 0, despite the fact that µA(x) ≤ µB(x) on the rest of X.
In addition, it shows that there exist in fuzzy literature some fuzzy sub-
sethood measures that do not fulfill this axiom, as for example the above
Goguen’s inclusion grade or the fuzzy subsethood of Kosko [16,17]:

σK(A,B) =

⎧⎪⎨
⎪⎩
∑n

i=1 ∧(µA(xi), µB(xi))∑n
i=1 µA(xi)

, if A �= 0

1, if A = 0

,

(3) Sinha and Dougherty first and later V. Young, reveal that if Axiom 2 is
maintained, then E(A) = σ(A ∨Ac, A ∧Ac) does not fulfill the first con-
dition of fuzzy entropy imposed by Deluca and Termini. This fact makes
Sinha and Dougherty, basing themselves on the work of D. Dubois and H.
Prade, propose to replace this entropy axiom with another one. However,
V. Young gives an example which makes clear that the modification of
the first axiom of entropy (in the sense given by Sinha and Dougherty)
would lead to an important loss of information.

(4) She also shows that the relationship given by Kosko between the fuzzy
subsethood measures and conditional probability disappears when con-
sidering the axiomatization of Sinha and Dougherty.



www.manaraa.com

A Method for Constructing V. Young’s Fuzzy Entropies 127

All these considerations led V. Young to give the following definition:

Definition 1. ([5]). A function

σV.Y. : F(X )×F(X ) →[0, 1]

is called a fuzzy subsethood measure, if σV.Y. satisfies the following properties:

(a) σV.Y.(A,B) = 1 if and only if A ≤ B
(b) If e ≤ A, then σV.Y.(A,Ac) = 0 if and only if A = 1, where e is the

equilibrium point of the strong negation considered
(c) If A ≤ B ≤ C, then σV.Y.(C,A) ≤ σV.Y.(B,A) and if A ≤ B, then

σV.Y.(C,A) ≤ σV.Y (C,B)

1.4 Motivation for this Work

From our point of view, the following arguments make us focus on the study
of the fuzzy subsethood measures of V. Young.

(A) The four previous considerations of V. Young.
(B) Kitainik’s measures and therefore Sinha and Dougherty’s have been am-

ply studied in fuzzy literature.
(C) Due to Theorem 1 we know that in Kitainik’s measures we should always

take aggregation Inf, a fact that brings even Bandler and Kohout to say
that the choice of this aggregation is a harsh criterion.

(D) We know that there exist fuzzy subsethood measures which are obtained
applying the arithmetic mean to implication operators, such as the fuzzy
subsethood measure of Goguen. Of course, this measure is not obtained
by means of aggregating with the Inf implication operators, as Bandler
and Kohout suggest.

All of these arguments, especially items (C) and (D) have brought us
to study in the following section a mechanism for the construction of fuzzy
subsethood measures of V. Young. Moreover, the arguments presented by this
author have led us to analyze on the one hand the conditions in which her
measures fulfill the axioms of Sinha and Dougherty and on the other, the way
of obtaining fuzzy entropies that satisfy the valuation property.

2 Construction of V. Young’s Subsethood Measures

The method for the construction of V. Young’s subsethood measures that
we present in this section is basically aggregating (using special aggregation
operators) certain functions. For this reason we begin presenting the minimal
properties that we are going to demand from the aggregation operators that
we are going to use (see [18] and [19]) and then show in a proposition, the
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mechanism for the construction of the subsethood measures object of study.
We conclude the section showing some examples.
An aggregation operator is defined by a function:

M : [0, 1]n → [0, 1]

for some n ≥ 2, that satisfy at least the four following conditions:
A1. M(x1, . . . , xn) = 0 if and only if xi = 0 for all i ∈ {1, . . . , n}.
A2. M(x1, . . . , xn) = 1 if and only if xi = 1 for all i ∈ {1, . . . , n}.
A3. For any pair (x1, . . . , xn) and (y1, . . . , yn) of n-tuples such that xi, yi ∈
[0, 1] for all i ∈ {1, . . . , n}, if xi ≤ yi for all i ∈ {1, . . . , n}, then M(x1, . . . , xn)
≤ M(y1, . . . , yn) i.e., M is monotonic increasing in all of its arguments.

This axiom will be denoted with A3S when we demand the operator to
be strictly increasing. That is: M is strictly increasing if and only if xi < yi

implies

M(x1, . . . , xi, . . . , xn) < M(x1, . . . , yi, . . . , xn), i = 1, . . . , n.

A4. M is a symmetric function in all its arguments, that is,

M(x1, . . . , xn) = M(xp(1), . . . , xp(n))

for any permutation p on {1, . . . , n}.
Evidently the conditions that we impose on the aggregation operators

above are more restrictive than those imposed by Dubois and Prade [20] and
Klir and Folger [21] (see [18]).

In our constructions we are going to use strong negations [22] whose equi-
librium point we will denote with e; that is, e ∈ (0, 1) such that c(e) = e.

Proposition 1. Let c be a strong negation such that c(e) = e, let M :
[0, 1]n → [0, 1] such that it satisfies A1 and A3S and let the functions

g, h : [0, 1]2 → [0, 1], such that

(1) g(x, y) ≤ h(x, y) for all x, y ∈ [0, 1]
(2) g(x, y) = h(x, y) if and only if x ≤ y
(3) If x ≥ e, then g(x, c(x)) = 0 if and only if x = 1

(4) If x ≤ y ≤ z, then

{
g(z, x) ≤ g(y, x)

h(y, x) ≤ h(z, x)
,

(5) If x ≤ y, then

{
g(z, x) ≤ g(z, y)

h(z, y) ≤ h(z, x)
,

Under these conditions σV.Y. : F(X )×F(X ) →[0, 1] given by

σV.Y.(A,B) =

⎧⎪⎨
⎪⎩

1 if h(µA(xi), µB(xi)) = 0 for all i ∈ {1, . . . , n}
Mn

i=1(g(µA(xi), µB(xi)))
Mn

i=1(h(µA(xi), µB(xi)))
, elsewhere

it is a fuzzy subsethood measure in the sense of V. Young.
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Proof. (a) (Necessity) If σV.Y. = 1, two things can happen:
(1) h(µA(xi), µB(xi)) = 0 for all xi. By (1) we have that g(µA(xi),

µB(xi)) = 0. By (2) it results that µA(xi) ≤ µB(xi) for all xi.

(2) If
Mn

i=1(g(µA(xi), µB(xi)))
Mn

i=1(h(µA(xi), µB(xi)))
= 1, then we have

Mn
i=1(g(µA(xi), µB(xi))) = Mn

i=1(h(µA(xi), µB(xi))).
If there exists any i for which g(µA(xi), µB(xi)) �= h(µA(xi), µB(xi)), by
(1) we have that g(µA(xi), µB(xi)) < h(µA(xi), µB(xi)). Since M satisfies
A3S we would have

Mn
i=1(g(µA(xi), µB(xi))) < Mn

i=1(h(µA(xi), µB(xi))),

which is a contradiction with the hypothesis. Therefore

g(µA(xi), µB(xi)) = h(µA(xi), µB(xi))

for all xi. By (2) µA(xi) ≤ µB(xi) for all xi holds.
(Sufficiency) If µA(xi) ≤ µB(xi) for all xi, two things can happen:
(1) If h(µA(xi), µB(xi)) = 0 for all xi, then σV.Y (A,B) = 1.
(2) By (2) we have that

g(µA(xi), µB(xi)) = h(µA(xi), µB(xi)),

therefore

σV.Y.(A,B) =
Mn

i=1(g(µA(xi), µB(xi)))
Mn

i=1(h(µA(xi), µB(xi)))
= 1.

(b) If A ≥ e, then
(Necessity) If σV.Y (A,Ac) = 0, then

Mn
i=1(g(µA(xi), c(µA(xi)))) = 0.

As M satisfies A1 we have g(µA(xi), c(µA(xi))) = 0 for all xi. Because of
(3) we have that A = 1.
(Sufficiency) If A=1, then by (3) we have g(µA(xi), c(µA(xi))= g(1, 0)= 0.
As M satisfies A1 we have Mn

i=1(g(µA(xi), c(µA(xi)))) = 0. Obviously,
h(1, 0) �= 0. we have to bear in mind that if it happened that h(1, 0) = 0
then, g(1, 0) = 0 = h(1, 0), because of (2) we would have 1 ≤ 0 which is
impossible.

(c) If A ≤ B ≤ C, then
(1) If σV.Y (C,A) = 1 by (a) we have that C = A, therefore σV.Y.(C,A) =

σV.Y.(B,A).
(2) If σV.Y.(C,A) �= 1, then

σV.Y.(C,A) =
Mn

i=1(g(µC(xi), µA(xi)))
Mn

i=1(h(µC(xi), µA(xi)))
≤

Mn
i=1(g(µB(xi), µA(xi)))

Mn
i=1(h(µC(xi), µA(xi)))

≤
Mn

i=1(g(µB(xi), µA(xi)))
Mn

i=1(h(µB(xi), µA(xi)))
= σV.Y.(B,A)
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If A ≤ B, then
(1) If σV.Y.(C,A) = 1, then by (a) we have C ≤ A, therefore C ≤ A ≤ B,

then σV.Y.(C,B) = 1; that is σV.Y.(C,A) = σV.Y.(C,B).
(2) If σV.Y.(C,A) �= 1, then

σV.Y.(C,A) =
Mn

i=1(g(µC(xi), µA(xi)))
Mn

i=1(h(µC(xi), µA(xi)))
≤

Mn
i=1(g(µC(xi), µB(xi)))

Mn
i=1(h(µC(xi), µA(xi)))

≤
Mn

i=1(g(µC(xi), µB(xi)))
Mn

i=1(h(µC(xi), µB(xi)))
= σV.Y.(C,B)

��

Example 1. For a finite set X, we take the functions{
g(x, y) = ∧(x, y)

h(x, y) = x

It is clear that g and h fulfill the conditions (1)–(5) of the proposition above.
Therefore

σV.Y.(A,B) =

⎧⎪⎨
⎪⎩

1 if µA(xi) = 0 for all i ∈ {1, . . . , n}
Mn

i=1(∧(µA(xi), µB(xi)))
Mn

i=1(µA(xi))
, elsewhere

it is a fuzzy subsethood measure in the sense of V. Young.
Obviously, if Mn

i=1(x1, . . . , xn) = 1
n

∑n
i=1 xi the previous expression is the

fuzzy subsethood measure given by Kosko [16].
Due to [19] we know that if λ > 0, then

Mn
i=1(x1, . . . , xn) =

(
1
n

n∑
i=1

xλ
i

) 1
λ

fulfills A1 and A3S. Therefore

σV.Y.(A,B) =

⎧⎪⎪⎨
⎪⎪⎩

1 if µA(xi) = 0 for all i ∈ {1, . . . , n}(∑n
i=1(∧(µA(xi), µB(xi)))λ

) 1
λ

(
∑n

i=1(µA(xi))λ)
1
λ

, elsewhere

it is a fuzzy subsethood measure in the sense of V. Young.

Example 2. For a finite set X, we take the functions{
g(x, y) = c(x)

h(x, y) = ∨(c(x), c(y))
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It is clear that g and h fulfill the conditions (1)–(5) of the proposition above.
Therefore

σV.Y.(A,B) =

⎧⎪⎨
⎪⎩

1 if A = 1 and B = 1

Mn
i=1(c(µA(xi)))

Mn
i=1(∨(c(µA(xi)), c(µB(xi))))

, elsewhere

it is a fuzzy subsethood measure in the sense of V. Young. This example was
proposed by Fan [6] as fuzzy ∗-subsethood measure.

Example 3. For a finite set X, we take the functions⎧⎪⎪⎨
⎪⎪⎩

g(x, y) = ∨(c(x),∧(x, y))

h(x, y) =

{
∨(c(x), x) if x ≤ y

1 elsewere.

It is clear that g and h fulfill the conditions (1)–(5) of the proposition above.
Therefore

σV.Y.(A,B) =
Mn

i=1(∨(c(µA(xi)),∧(µA(xi), µB(xi))))

Mn
i=1

(
∨(c(µA(xi)), µA(xi)) if µA(xi) ≤ µB(xi)

1 elsewhere

)

is a fuzzy subsethood measure in the sense of V. Young. We must note that
in this example the function g that we take is the implication operator of
Zadeh. It is precisely the weakening of Axiom 4 by V. Young what enables
the construction of this fuzzy subsethood measure from Zadeh’s operator.

Example 4. For a finite set X, we take the functions{
g(x, y) = ∧(1, 1− x + y)

h(x, y) = 1

It is clear that g and h fulfill the conditions (1)–(5) of the proposition above.
Therefore

σV.Y.(A,B) = Mn
i=1(∧(1, 1− µA(xi) + µB(xi))

is a fuzzy subsethood measure in the sense of V. Young. Obviously, this ex-
ample is obtained from Proposition 6 taking h(x, y) = 1; that is, aggregating
by means of the arithmetic mean the operator of implication of Lukasiewicz.

If in the example above we take Mn
i=1(x1, . . . , xn) = 1

n

∑n
i=1 xi; that is,

σV.Y.(A,B) =
1
n

n∑
i=1

(∧(1, 1− µA(xi) + µB(xi))

we get the fuzzy subsethood measure defined by Goguen in [14].
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3 Fuzzy Subsethood Measure of V. Young and Axioms
of D. Sinha and R. Dougherty

The result of the study of the conditions in which the constructions presented
in Proposition 1 fulfill the axioms of Sinha and Dougherty is shown on Table 1.

Table 1. Proposition-1 Fulfilment

Sinha D. V. Young

Axiom 1

{
It coincides with (a); that is,

σV.Y. fulfills it.

Axiom 2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

It is replaced by (b); that is,

If A > e, then

σV.Y.(A, Ac) = 0 if and only if

A = 1

Axiom 3

{
It coincides with the second

condition of (c).

Axiom 4

{
It is restricted to the first

condition of (c),

Axiom 5

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

In the conditions of

Proposition 1,

if M satisfies A4, then σV.Y.

fulfills it.

Axiom 6

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

In the conditions of

Proposition 1,

if g(x, y) = g(c(y), c(x)) and

h(x, y) = h(c(y), c(x), then, σV.Y.

fulfills it.

Axiom 7

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σV.Y.does not fulfill it. Nor

does it fulfill,

σV.Y.(B ∨ C, A) ≤
∧(σV.Y.(B, A), σV.Y.(A, C))

Axiom 8

⎧⎪⎨
⎪⎩

σV.Y. fulfills the following

inequality:σV.Y.(A, B ∧ C) ≤
∧(σV.Y.(A, B), σV.Y.(A, C))

Axiom 9
{
fulfills it.

Axiom 10

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

In the conditions of

Proposition 1, if

g(x, y) + g(x, c(y)) ≥ 1 and

Mn
i=1(x1, · · · , xn)+

Mn
i=1(1 − x1, · · · , 1 − xn) ≥ 1

then σV.Y fulfills it.
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Table 1. (Continued)

Axiom 11
{
fulfills it.

Axiom 12

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

In the conditions of

Proposition 1, if

g(x, y) ≥ y;

g(x, y) = g(c(y), c(x)) and

M is idempotent,

then σV.Y. fulfills it.

4 Fuzzy Entropy and Fuzzy Subsethood Measure
in the Sense of V. Young

We know that a measure of fuzzy entropy assesses the amount of vagueness,
or fuzziness, in a fuzzy set. In 1972 Deluca and Termini [23] formalize the
properties of fuzzy entropy through the following axioms:

Definition 2. A real function E : F(X ) →[0, 1] is called an entropy on F(X),
if E satisfies the following properties:

(E1) E(A) = 0 if and only if A is nonfuzzy;
(E2) E(A) = 1 if and only if A = e;
(E3) E(A) ≤ E(B) if A refines B; that is, µA(x) ≤ µB(x) when µB(x) ≤ e

and µA(x) ≥ µB(x) when µB(x) ≥ e;
(E4) E(A) = E(Ac).

Many such entropy functions have been defined in the literature. A sample
can be found in Dubois and Prade [7].

In 1983, Ebanks [24] presented the following definition of fuzzy entropy.

Definition 3. A real function E : F(X ) →[0, 1] is called an entropy on F(X),
if E has the following properties:

(E1) E(A) = 0 if and only if A is nonfuzzy;
(E2) E(A) is maximum if and only if A = e, where e is the equilibrium point

of the strong negation considered;
(E3) E(A) ≤ E(B) if A refines B; that is, µA(x) ≤ µB(x) when µB(x) ≤ e

and µA(x) ≥ µB(x) when µB(x) ≥ e;
(E4) E(A) = E(Ac);
(E5) (property of valuation) E(A ∨B) + E(A ∧B) = E(A) + E(B).

Ebanks gave the following necessary and sufficient conditions on functions
so that they satisfy the requirements (E1)–(E5) for discrete fuzzy sets:

Theorem 2. Let E : F(X) → R+ and µi = µA(xi) for all i. Then E sat-
isfies (E1)–(E5) if and only if E has the form E(A) =

∑n
i=1 g(µi) for some

functions g : [0, 1] → R+ that satisfy:
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(G1) g(0) = g(1) = 0; g(x) > 0 for all x ∈ (0, 1);
(G2) g(x) < g(e) for all x ∈ [0, 1]− e;
(G3) g is nondecreasing on [0, e) and nonincreasing on (e, 1];
(G4) g(x) = g(c(x)) for all x ∈ [0, 1], where c is a strong negation such that

c(e) = e.

As V. Young recalls in [5], to relate fuzzy subsethood measure with fuzzy
entropy, Kosko [16] proposes the following expression: given a fuzzy subset-
hood measure σ the entropy E generated by σ is defined as

E(A) = σ(A ∨Ac, A ∧Ac), for all A ∈ F(X ).

As we have said before, this was one of the reasons which led V. Young to
impose item (b) and the first condition of item (c) in Definition 1, in such a
way that she obtains the following result:

Theorem 3. ([5]) If σV.Y. is a fuzzy subsethood measure on X, then E defined
by

EV.Y.(A) = σV.Y.(A ∨Ac, A ∧Ac) for all A ∈ F(X )

is a fuzzy entropy measure on X.

Evidently, from functions g and h of Proposition 1 we have that

EV.Y.(A)

=

⎧⎪⎨
⎪⎩

1 if h(∨(µA(xi), c(µA(xi))),∧(µA(xi), c(µA(xi)))= 0 for all i∈{1, . . . , n}
Mn

i=1(g(∨(µA(xi), c(µA(xi))),∧(µA(xi), c(µA(xi))))
Mn

i=1(h(∨(µA(xi), c(µA(xi))),∧(µA(xi), c(µA(xi))))
, elsewhere

is a fuzzy entropy.
It is easy to see that many of the properties demanded from the functions

g in Proposition 1 and the conditions on Table 1 are the same that are usually
imposed on the implication operators I. The following Lemma allows us to
say even more about these functions g.

Lemma 1. Let n be a whole positive finite number, let c be any strong negation
and let the function

g : [0, 1]2 → [0, 1] such that

(1′) If x ≥ e, then g(x, c(x)) = 0 if and only if x = 1;
(2′) If x ≤ y ≤ z, then g(z, x) ≤ g(y, x);
(3′) If x ≤ y, then g(z, x) ≤ g(z, y);
(4′) g(x, y) = 1 if and only if x ≤ y,
then the function

G : [0, 1] → [0, 1], given by

G(x) = 1
ng(∨(x, c(x)),∧(x, c(x)))
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satisfies the following properties:

(G1) G(0) = G(1) = 0;G(x) > 0 for all x ∈ (0, 1);
(G2) G(x) < G(e) for all x ∈ [0, 1]− e;
(G3) G is nondecreasing on [0, e) and nonincreasing on (e, 1];
(G4) G(x) = G(c(x)) for all x ∈ [0, 1].

Proof. (G1). Bearing in mind (1’) we have

G(0) = 1
ng(1, 0) = 0

G(1) = 1
ng(1, 0) = 0

Now let us see that G(x) > 0 for all x ∈ (0, 1). Let us suppose this is not
so; that is, there exists a x′ ∈ (0, 1) such that G(x′) = 0. By definition we
have that G(x′) = 0, then

0 = g(∨(x′, c(x′)), c(∨(x′, c(x′)))).

Two things can happen:
(a) If ∨(x′, c(x′)) ≥ e, then because of (1’) we have ∨(x′, c(x′)) = 1 there-

fore x′ = 1 or x′ = 0 which is impossible, because x′ ∈ (0, 1).
(b) If ∨(x′, c(x′)) < e, then x′ < e and c(x′) < e, which is impossible

because if x′ < e, then c(x′) > e and if c(x′) < e, then x′ > e.
Therefore G(x) > 0 for all x ∈ (0, 1).

(G2). Evidently, G(e) = 1
ng(e, e). Let x ∈ [0, 1]− e. Two things can happen:

(a) If x < e, then x < e < c(x) by the properties (2’) and (3’) we have
G(x) = 1

ng(c(x), x) ≤ 1
ng(e, x) ≤ 1

ng(e, e) = G(e).
(b) If x > e, then c(x) < e < x, therefore G(x) = 1

ng(x, c(x)) ≤
1
ng(e, c(x)) ≤ 1

ng(e, e) = G(e).
Therefore for all x ∈ [0, 1] − e we have G(x) ≤ G(e). Let us see
now that G(x) < G(e). Let us suppose that it is not true; that is,
there exists at least one x′ ∈ [0, 1] − e such that G(x′) = G(e);
that is, G(x′) = 1

ng(∨(x′, c(x′)), c(∨(x′, c(x′)))) = 1
ng(e, e) = 1

n , then
g(∨(x′, c(x′)), c(∨(x′, c(x′)))) = 1, due to the condition (4’) we have
that ∨(x′, c(x′)) ≤ c(∨(x′, c(x′))) = ∧(x′, c(x′)), then ∨(x′, c(x′)) =
∧(x′, c(x′)), therefore x′ = e which is a contradiction, therefore G(x) <
G(e) for all x ∈ [0, 1]− e.

(G3). Let x1, x2 ∈ [0, e) such that x1 ≤ x2 < e, then x1 ≤ x2 < e < c(x2) ≤
c(x1). Bearing in mind the conditions (2’) and (3’) we have G(x1) =
1
ng(c(x1), x1) ≤ 1

ng(c(x2), x1) ≤ 1
ng(c(x2), x2) = G(x2).

Let x1, x2 ∈ (e, 1] such that e < x1 ≤ x2, then c(x2) ≤ c(x1) < e <
x1 ≤ x2. In these conditions, considering the conditions (2’) and (3’) we
have G(x1) = 1

ng(x1, c(x1)) ≥ 1
ng(x2, c(x1)) ≥ 1

ng(x2, c(x2)) = G(x2).
(G4). Evidently because c is strong negation.

��
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In the following theorem we show the conditions in which we can construct
fuzzy entropies that satisfy the valuation property from V. Young subsethood
measures and therefore from the constructions developed in Proposition 1.

Theorem 4. Let X be the referential set that is finite, non-empty such that
|X| = n. In the same conditions as in Proposition 1, if Mn

i=1(x1, . . . , xn) =
1
n

∑n
i=1 xi and h(x, y) = 1 for all x, y ∈ [0, 1]. Then

EV.Y.(A) = σV.Y.(A ∨Ac, A ∧Ac)

is a fuzzy entropy that satisfies the property of valuation.

Proof. We only need to bear in mind the lemma above and the theorem of
Ebanks.

��

5 Conclusions and Future Line of Work

From a critical revision of the three most important axiomatizations that exist
in fuzzy literature for fuzzy subsethood measures, we have concluded that the
arguments shown by V. Young to replace Axiom 2 of Sinha and Dougherty
make the study of her definition very attractive.

We have seen that the measures of this author can be obtained aggregating
functions of [0, 1]2 in [0, 1]. Some of these functions with properties similar to
the ones usually demanded from implication operators. We have also proven
the following:

(a) From her fuzzy subsethood measures we can construct fuzzy entropies.
(We have seen that if we take the arithmetic mean aggregation, the en-
tropy satisfies the property of valuation).

(b) A characteristic of her measures is that they always fulfill Axiom 9; that
is,

σDI(A,B ∨ C) ≥ ∨{σDI(A,B), σDI(A,C)}

for all A,B,C ∈ F(X).
(c) They also fulfill the inequality: σDI(A,B∧C) ≤ ∧{σDI(A,B), σDI(A,C)}.

These facts suggest to us that in the future we must study the construction
of fuzzy inclusion measures de V. Young, from M aggregations that satisfy
A1−A4 and I implication operators. That is, study constructions of the form:

σ(A,B) = Mn
i=1(I(µA(xi), µB(xi))).

Naturally, it will depend on the properties we demand from M and I for the
functions σ to be fuzzy subsethood measures and to satisfy certain axioms.
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We should focus on analyzing the influence of the conditions demanded from
implication operators in order for the new measures to satisfy Sinha and
Dougherty’s axioms.

Another objective we have in mind is to analyze the ∗−measures of inclu-
sion of Fan et al. We know [6] that the fuzzy inclusions that these authors
define are the same as V. Young’s changing the condition:
(c) If A ≤ B ≤ C, then σV.Y.(C,A) ≤ σV.Y.(B,A) and if A ≤ B, then
σV.Y.(C,A) ≤ σV.Y (C,B), by the condition:
(c) If A ≤ B ≤ C, then σ∗(C,A) ≤ σ∗(B,A) and σ∗(C,A) ≤ σ∗(C,B).

We think that we can present a method of construction similar to that of
Proposition 1 for these measures and likewise analyze on the one hand the
manner of constructing fuzzy entropies from them and on the other analyze
the conditions that must be met by M and g in order for said measures to
satisfy the axioms of Sinha and Dougherty.
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Summary. This chapter introduces a Neural-Fuzzy (NF) modelling structure for
offline incremental learning. Using a hybrid model-updating algorithm (super-
vised/unsupervised), this NF structure has the ability to adapt in an additive way
to new input–output mappings and new classes. Data granulation is utilised along
with a NF structure to create a high performance yet transparent model that entails
the core of the system. A model fusion approach is then employed to provide the
incremental update of the system. The proposed system is tested against a multi-
dimensional modelling environment consisting of a complex, non-linear and sparse
database.

1 Introduction

Data driven Computational Intelligence (CI) models are often employed to
describe processes and solve engineering problems with great success. Neural-
Networks (NN) [7, 11], Fuzzy, and Neural-Fuzzy systems (NF) [3, 10] as well
as Evolutionary and Genetic Algorithms (GA) [9,12] have all been used in the
past to solve real-world modelling and control engineering problems. The sci-
entific maturity of such methodologies and the demand for realistic represen-
tations of high complexity real-world engineering processes allowed new and
advanced features of such systems to evolve. Such features include the ability
of a model/structure to incrementally learn from new data. These structures
are able to learn from an initial database (with appropriate training) but
at the same time incrementally adapt to new data when these are available.
Additional requirements include the system’s ability to interact with the en-
vironment in a continuous fashion (i.e. life-long learning mode) and having an
open structure organisation (i.e. dynamically create new modules) [5]. Several
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methods have been developed so far that demonstrate some of the aspects of
incremental learning systems [2, 4–6].

This chapter presents a new approach that is based on Granular Comput-
ing Neural-Fuzzy networks (GrC-NF) [10]. By using such an approach, it is
possible to achieve a high single network performance and at the same time
maintain a high system transparency (in contrast to black-box low trans-
parency modelling i.e. NN). An incremental learning architecture is sub-
sequently developed using the GrC-NF models in a cascade model-fusion
manner. The entropy of the cascade models is used as the main feature that
assists the data fusion process.

The proposed methodology is tested against a multidimensional MISO
real industrial application; the prediction of mechanical properties of heat-
treated steel is investigated. Such application involves complex databases,
containing data with non-linear dynamics and high interaction between the
dimensions as well as sparse data of high uncertainty (measurement noise,
operator errors, etc.).

2 GrC – NF Modelling

Models elicited via the Granular Computing – Neural-Fuzzy (GrC-NF) ap-
proach, as described in [10], will form the main building blocks of the Incre-
mental Learning (IL) system. This modelling process is realised in three steps:

1. Knowledge discovery
2. Rule-base creation
3. Model optimisation

2.1 Knowledge Discovery

Granular Computing mimics the perception and the societal instinct of hu-
mans when grouping similar items together. Grouping items together is not
just a matter of proximity but also of similarity measures such as similar-
ity in class or function. Data granulation [1, 9] is achieved by a simple and
transparent two-step iterative process that involves the two following steps:

• Step 1: Find the two most ‘compatible’ information granules and merge
them together as a new information granule containing all the information
included in both original granules.

• Step 2: Repeat the process of finding the two most compatible granules
and merging them, until a satisfactory data abstraction level is achieved.
The abstraction level can be manually or automatically set.

The most important concept in the above process is the definition of
the compatibility measure, which varies between authors. This definition can
be purely geometrical (distance between granules, size of granules, volume
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of granules), density-driven (ratio of cardinality versus granule volume) or
similarity-driven (data overlap). In this chapter, the compatibility measure is
defined as a function of the distance between the granules and the information
density of the newly formed granule. A mathematical representation of the
compatibility criterion is described by the following three equations:

Compatibility = f (w1 ·Distance, w2 ·Density) (1)

Distance =
k∑

i=1

(position of granuleB − position of granuleA)i (2)

Density =
granule cardinality

granule volume
=

no. of sub-granules
k∏

i=1

granule lengthi

(3)

Where w1, w2 are weights for balancing the distance/density requirements
and k is the dimensionality of the data space. This definition of compati-
bility uses the distance between the granules as well as the cardinality and
the granule volume (to form the density criterion). Alternative forms of the
compatibility criterion may also contain the granule’s size (multidimensional
circumference).

The growth of the granules (from data) allows for a strong linkage between
the original data set (transparency) and it permits visual monitoring of the
granulation process. Considering the merging of each set of granules as some
information condensation or information loss, it is possible to link information
loss to the merged distance and therefore plot an information loss graph.
This graph can be used on-line or off-line as a criterion for terminating the
granulation process. The control of the granularity level high/low allows the
development of models with a variable level of abstraction i.e. low abstraction
models – low number of granules/fuzzy rules.

Figure 1, shows five (5) snapshots of a 2-dimensional data granulation.
Dimension A has a range between 0–2,000 units, and Dimension B between
0–800 units. The first snapshot, shown at the top of the figure, is the repre-
sentation of the raw, pre-granulated data, consisting of 3,760 data points. As
the iterative granulation algorithm progresses, snapshots of the granulation
process are shown, consisting of 1,000 granules (second snapshot of data), 250
granules, 25 and finally 18 granules. The added information collected during
the granulation process is stored, and it consists of the cardinality and the
multidimensional length and density of each granule. These data are going to
be used for creating a linguistic rule-base, as it is shown in the next section.

The orientation of the granules is also of high importance as it is shown
in [10]. Controlling the orientation of the formed granules, and favouring one
dimension over an other (or others) can have beneficial effect to the modelling
process by increasing the model’s sensitivity to a particular input space.
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Fig. 1. Iterative information granulation, a two-dimensional example

2.2 From Information Granules to a Fuzzy Rule-Base

Consider the granulation of an input/output database provided by a multi-
input single-output (MISO) system. By granulating across each input dimen-
sion individually and at the same time across the whole input space it is
possible to identify relational information (rules) similar to a Mamdani Fuzzy
Inference System (FIS) rule-base of the following form:

Rule 1: (4)
if (inputA = A1 and inputB = B1 and . . .)
then (output = O1)
Rule 2:
if (inputA = A2 and inputB = B2 and . . .)
then (output = O2)
M

Where Ai, Bi, Oi are information granules discovered during the GrC
process and i: is the number of extracted granules.
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The information captured during the GrC granulation process defines the
initial structure of the fuzzy rule-base, the number of rules and the initial
location and width of the membership functions (MFs). For establishing the
location of each MF, the centre of the each granule is considered, and the width
can be determined using the multidimensional length and the density of each
granule. This rule-base is then used as the initial structure of a Neural-Fuzzy
system.

2.3 Model Optimisation

Using the popular 3-layer RBF Neural-Fuzzy representation [3] it is possible
to optimise the model using a fast Back Error Propagation (BEP) algorithm.

Depending on the output set Oi of the consequent part of each linguistic
rule (. . .then the output is Oi) the fuzzy system can be:

1. O: Fuzzy Set, Mamdani rule-base
2. O: Singleton, Mamdani singleton
3. O: Linear function, Takagi–Sugeno–Kang (TSK)

In this chapter, the Mamdani singleton consequent part is considered. The
equations describing the Mamdani singleton Neural-Fuzzy system are given
as follows:

y =
p∑

i=1

zigi (x) (5)

Where gi (x) is the radial basis function (RBF), defined as:

gi (x) =
mi (x)

p∑
i=1

mi (x)
(6)

The NF training procedure starts by initialising the centres and widths of
each fuzzy weight. This can be achieved by taking the corresponding values
from the GrC rule-base structure. The NF model is then trained using an
adaptive weighted back-error-propagation (BEP) algorithm [3] (Fig. 2).
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Fig. 2. General architecture of a fuzzy RBF network
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3 Incremental Learning

The incremental learning/update of the system is achieved by defining an
appropriate structure that is based on the NF model as described in Sect. 2.
After defining the structure, two algorithms are developed, one for updating
the structure (incremental learning) and the other for obtaining the model
predictions.

3.1 Incremental Learning Structure

The IL model structure is based on cascaded NF models. The structure can
dynamically create new sub-modules (NF networks) when new data become
available. Figure 3 shows the system’s architecture. The cascaded networks
represent the knowledge database of the system. An information fusion algo-
rithm is going to be used that utilises this knowledge efficiently, as will be
shown in the next section.

3.2 Model Update

When new data are available the system can modify (expand) its structure to
accommodate the new data, without disrupting the previously elicited model,
using the algorithmic process shown in Fig. 4.

The new data are filtered by the system before they are fed to the update
process. The new data vectors are compared with the existing information
granules of the system and are split into real new data and partially new data.
The real new data consist of data that belong to a totally new input space
as compared to the original data, and the partially new data are data that
belong or are close to the existing input space of the data set. Thresholds for
the multidimensional granules’ distance definitions have to be defined by the
system designer, ThresRealNew and ThresPartNew.

Each data set is handled differently by the update mechanism. The par-
tially new data are used to perform a constrained training (fine-tuning) of the
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Fig. 3. IL Cascade architecture
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Fig. 4. The structure of the model update process

original system, so that the already existing knowledge is not disturbed. Since
the input space of the partially new data is mostly covered by the system (by
one or more sub-modules), there is no need to create a new module but just
fine-tune the existing structure. The “genuine” new data are used to create
a new sub-module, using the same GrC-NF modelling procedure. The new
sub-module is then placed in a cascade fashion (as shown in Sect. 3.1) along
with the rest of the NF sub-modules.

3.3 Model Predictions

After the model update process the cascade structure contains all the knowl-
edge required by the system, the individual sub-modules cover both old data
and new data input spaces. When an input vector is presented at the system
an intelligent model fusion process is developed that is able to identify the ap-
propriate sub-models for this particular input vector. The active sub-models
provide individual predictions that are then fused together to provide the final
model-prediction/answer.

Assume an input vector is presented to the system, at this stage the sys-
tem does not know which sub-module (if any) is able to provide a reliable
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answer/prediction. All sub-modules are activated and provide a single pre-
diction each. While the NF networks provide a prediction, an entropy value
(measure of fuzziness) can be calculated for each individual network [8].

A comparative index can be formulated, based on the entropy values. As
it is shown in Fig. 5 it is possible to identify among the sub-modules which are
the ones that are more active for a particular input vector. Figure 5 shows how
the comparative index (entropy based) of two sub-modules varies for the old
data set and the new data set. It can be seen that the “sub-module A” produces
a higher index for the new data compared to the old data. Equivalently, “sub-
module B” produces a lower index for the new data compared to the old data.
By combining the information of both plots, it is possible to identify the sub-
module which should be credited for the correct prediction of the new data.

When a sub-module is very active to a particular input vector, it means
that the input space of the sub-module matches the input space of the given
vector and vice versa. Therefore, by calculating the entropy based comparison
index between the sub-modules it is possible to identify the ones that are more
likely to give a correct answer for a particular input vector. The selection
decision of the sub-modules is usually not very clear, i.e. when the entropy
boundaries are not very far apart, therefore it is difficult to distinguish them.
Therefore, a fuzzy decision mechanism is employed that provides a fusion
answer between the sub-modules-candidates.

If the decision variable is above or below some predefined threshold then it
is easy to assign a sub-module, if not, the answer is given by the fuzzy decision
mechanism that fuses the two answers together to provide a single value.

Following the completion of the structural design of the system, the pro-
posed methodology is tested against a real-world industrial process, the pre-
diction of mechanical properties of heat-treated steel.
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4 Experimental Studies

Determining the optimal heat treatment regimes and weight percentage of
composite materials of steel is a common but not trivial task in the steel
industry. Heat treatments are frequently used in steel industry to develop
the required mechanical properties of various steel grades i.e. hardening and
tempering (see Fig. 6).

During the hardening stage, the material is soaked at a temperature to al-
low for austenitic transformation. The hardening stage is followed by quench-
ing, which is performed using an oil or water medium. Finally, the tempering
stage takes place, which aims to improve the toughness and ductility prop-
erties of the steel by heating it to specific temperatures and then air-cooling
it. By predicting correctly both the optimal conditions (heat treatment) and
steel composition of the steel, it is possible to obtain the required steel grade
with accuracy and at a reduced cost. The modelling predictions presented in
this chapter are based on both the chemical composition and the various heat
treatment regimes. This is a multiple-input single-output (MISO) process that
is difficult to model due to the following reasons:

• Non-linear behaviour of the process
• High interaction between the multivariable input spaces
• Measurement uncertainty of the industrial data
• High complexity of the optimisation space
• Sparse data space (see Fig. 7). The variables presented are: Ultimate

Tensile Strength (UTS) – y-axis, and x-axis: Carbon (C), Nickel (Ni),
Chromium (Cr) and Tempering Temperature (T.Temp). z-axis (vertical)
shows the data density

Fig. 6. Heat treatment of steel



www.manaraa.com

148 G. Panoutsos and M. Mahfouf

da
ta

 d
en

si
ty

da
ta

 d
en

si
ty

da
ta

 d
en

si
ty

80 150

100

50

0

100

50

0

60

40

20

0
1800

1200

600UTS

1800

1200

600UTSC
0.2

0.4
0.6

da
ta

 d
en

si
ty

80

60

40

20

0
1800

1200

600UTS T.Temp200
400

600

1800

1200

600UTS Cr
1

2
3

Ni

2
4

Fig. 7. Sample of the sparse data space

Black box modelling techniques [11] and grey-box modelling techniques
[10] are usually employed to tackle this problem with a good level of perfor-
mance. Developing such models requires a lot of effort, scientific and expert
knowledge, model fine-tuning and model simulation and verification. Obtain-
ing new data sets is an expensive and slow process in this industry, and when
the new data are available, the whole modelling process has to be repeated.
This can be time-consuming and it does not guaranty that the new model will
retain a performance standard comparable to the old model.

Using the technique presented in this chapter, it is possible to incremen-
tally update the initial system in order to accommodate the new data set.
The new structure is then able to predict input vectors belonging to the new
data set without any significant performance loss on the overall performance
of the system (old data set, and old/new data set combined).

A high dimension data set, taken from the steel industry, is used for mod-
elling purposes. Each set of points represents 15 input variables and 1 output
variable. The input variables include both: (a) the chemical composition of
steel (i.e. % content of C, Mn, Cr, Ni etc.) and (b) the heat treatment data
(Tempering temperature, Cooling medium etc.). The output variable is the
steel property that needs to be modelled/predicted, in this case the Tensile
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Strength. The TS data set consists of 3,760 data vectors, which are divided
as follows for the purpose of modelling:

1. Old data – training (2,747 data points)
2. Old data – validation (916 data points)
3. New data – training (72 data points)
4. New data – validation (24 data points)

Care has been taken so that the ‘new data’ set covers mostly an input
region that is not covered by the ‘old data’ set (i.e. a new steel grade that is
not covered by the ‘old data’ set). The old data set has various steel grades
and the new data set contains mostly high ‘Mo’ data. The ‘High Mo’ data,
are obtained from a specific steel cast that has a particular high level of
Molybdenum (Mo) as compared to the rest of the data set. All data sets were
cleaned for spurious or inconsistent data points and the dimensionality of the
data space is 16 (15-inputs 1-output). The data space, apart from being non-
linear and complex, is also very sparse. This is because these industrial data
are focused towards specific grades of steel; therefore there are discontinuities
in most of the input dimensions.

4.1 Initial Model Performance

The ‘old’ training and validation data set (sets 1 and 2) are used for train-
ing and testing the performance of the initial model. After performing data
granulation to the training data set the linguistic rule-base of the system is
established, as per Sect. 2.2. The model is then optimised using the BEP al-
gorithm shown in Sect. 2.3. The model fit plots (measured vs. predicted) are
shown in Fig. 8.

Fig. 8. Performance of the initial model
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The diagonal straight line represents the ‘0%’ error line, and ideally, if the
model could predict with 100% accuracy then all data points would be on
this diagonal line. The bigger the perpendicular distance to a data point the
bigger the prediction error.

The performance level of the model is characterised as good by process
experts and is comparable to the performance reported in [10] for a similar
process.

4.2 Incremental Learning Performance

The ‘new’ training and validation data set is then presented to the system.
The training data set is filtered by the system (as described in Sect. 3.2)
and is split up into two sets named ‘new data’ and ‘partially new data’. The
partially new data are used to fine-tune the existing NF model, and the new
data are used to create a new NF sub-module that is trained using the same
algorithmic procedure as the initial model. The new sub-module is cascaded
along with the rest of the sub-modules in the original structure.

After the incremental update procedure has finished the network is tested
for its performance on the old data set as well as the new data set (training
and validation). The results are shown in Fig. 9.

As seen in the model fit plot (training data sets) the structure is able to
maintain a good performance, in fact similar to the one observed in the original
model, but at the same time it can predict with comparable accuracy input
vectors that originate from the new data set (high Mo data). Similar behavior
is observed during the validation tests of the equivalent ‘old’ and ‘new’ data
sets, as it is shown in Fig. 10. The model is able to handle correctly unseen

Fig. 9. IL Structure – Performance on the training data set
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Fig. 10. IL Structure – Performance on the validation data

input data vectors; when the input MFs are adequetly excited the appropriate
cascade sub-modules are activated, and via the fuzzy fusion process a single
prediction is obtained with good accuracy.

5 Conclusion

In this chapter an incremental learning structure is presented, that is based
on computational intelligence data-driven modeling and model fusion. The
structure is based on Neural-Fuzzy models that are created using the Gran-
ular Computing – Neural-Fuzzy procedure. The cascade modeling architec-
ture of the system and the incremental updating algorithm provide a reliable
model updating routine that results in a dynamically expandable structure
that does not ignore any previously gained knowledge. All knowledge is main-
tained (stored) in the cascade architecture and a model-fusion technique,
based on the models’ fuzzy entropy value, is credited for extracting the sys-
tem’s knowledge and obtaining individual model predictions. These predic-
tions are subsequently intelligently fused into a single final prediction for any
given input vector.

The abstraction level of the resulting models is controlled via the level
of granulation of the input space. The transparency of the resulting GrC-NF
models allows the visual examination of individual rules and the validation
of the model knowledge/rules as compared with experts’ knowledge or any
relevant theory.
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The incremental learning structure is tested against a real-world modeling
problem obtained from a complex industrial process, the prediction of me-
chanical properties of heat treated steel. This process needs to be accurately
modeled and the models need to be periodically updated when new data are
available. It was shown that the proposed structure is able to model the given
process and incrementally update the models when needed. The performance
of the model on the ‘old data’ is maintained, and the performance on the ‘new
data’ is comparable to the overall original performance.

Further development of this incremental learning process includes the full
automation of the model updating process and the elimination of manual
supervised learning (threshold definitions etc.). Additionally, the structure
can be appropriately modified to meet the demands of an environment where
more frequent model updates are required.
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Summary. Stability issues for switched systems whose subsystems are all fuzzy
systems, either continuous-time or discrete-time, are studied and new results derived.
Innovated representation models for switched fuzzy systems are proposed. The single
Lyapunov function method has been adopted to study the stability of this class
of switched fuzzy systems. Sufficient conditions for quadratic asymptotic stabil-
ity are presented and stabilizing switching laws of the state–dependent form are
designed. The elaborated illustrative examples and the respective simulation exper-
iments demonstrate the effectiveness of the proposed method.

1 Introduction

The large class of switched systems has attracted extensive research during
the last couple of decades both as such and also in conjunction of the even
larger class of hybrid systems, e.g. see [2, 8, 13, 14, 21]. For, these systems
have a wide range of potential applications. For instance, such systems are
widely used in the multiple operating point control systems, the systems of
power transmission and distribution, constrained robotic systems, intelligent
vehicle highway systems, etc. Thus switched systems represent one of the
rather important types of hybrid systems. Basically all switched systems are
consisted of a family of continuous-time or discrete-time subsystems and a
switching rule law that orchestrates the switching among them.

Recently switched systems have been extended further to encompass
switched fuzzy systems too [12, 14, 20] following the advances in fuzzy slid-
ing mode control [4, 9, 11] although for long time it was known that ideal

H. Yang et al.: Switched Fuzzy Systems: Representation Modelling, Stability Analysis, and

Control Design, Studies in Computational Intelligence (SCI) 109, 155–168 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

156 H. Yang et al.

relay switching is a time optimal control law [17]. A switched fuzzy system
involves fuzzy systems among its sub-systems. The extension emanated out of
the remarkable developments in theory, applications, and the industrial imple-
mentations of fuzzy control systems, e.g. see [1,16,18,19,23], which exploited
Lyapunov stability theory.

It appeared, the class of switched fuzzy systems can describe more precisely
both continuous and discrete dynamics as well as their interactions in complex
real-world systems. In comparison to either switched or fuzzy control systems,
still few stability results on switched fuzzy control systems can be found in
the literature. For the continuous-time case, in [12] a combination of hybrid
systems and fuzzy multiple model systems was described and an idea of the
fuzzy switched hybrid control was put forward. For the discrete-time case,
in [5], a fuzzy model whose subsystems are switched systems was described.
In this model switching takes place simply based on state variables or time.
Subsequently the same authors gave some extensions to output [6] and to
guaranteed-cost [7] control designs.

In here, an innovated representation modelling of continuous-time and
discrete-time switched fuzzy systems is proposed. Sufficient conditions for
asymptotic stability are derived by using the method of single Lyapunov func-
tion and the parallel distributed compensation (PDC) fuzzy controller scheme
as well as the stabilizing state–dependent switching laws.

Further this study is written as follows. In Sect. 2, the representation
modelling problem has been explored and innovated models proposed for both
continuous-time and discrete-time cases; note, also both autonomous and non-
autonomous system are observed in this study. Section 3 gives a thorough
presentation of the new theoretical results derived. In Sect. 4, there are pre-
sented the illustrative examples along with the respective simulation results
to demonstrate the applicability and efficiency of the new theory. Thereafter,
conclusion and references are given.

2 Novel Models of Switched Fuzzy Systems

In this paper, only Takagi–Sugeno (T − S) fuzzy systems representing the
category of data based models are considered. This representation differs from
existing ones in the literature cited: each subsystem is a T − S fuzzy system
hence defining an entire class of switched fuzzy systems. This class inherits
some essential features of hybrid systems [2,14] and retains all the information
and knowledge representation capacity of fuzzy systems [16].

2.1 The Continuous-Time Case

Consider the continuous T − S fuzzy model that involves Nσ(t) rules of the
type as

Rl
σ(t) : If ξ1is Mσ(t)1Λ and ξp is M l

σ(t)p,

Then ẋ = Aσ(t)lx(t) + Bσ(t)luσ(t)(t), l = 1, 2, . . . , Nσ(t) (1)
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where σ : R+ → M = {1, 2,Λ,m} is a piecewise constant function and it
is representing the switching signal. In rule-based model (1), Rl

σ(t) denotes
the lth fuzzy inference rule, Nσ(t) is the number of inference rules, u(t) is the
input variable, and the vector x(t) = [x1(t) x2(t)Λ xn(t)]T ∈ Rn represents the
state variables. Vector ξ = [ξ1ξ2 Λ ξp] represents the vector of rule antecedents
(premises) variables. In the linear dynamic model of the rule consequent,
the matrices Aσ(t)l ∈ Rn×n and Bσ(t)l ∈ Rn×p are assumed to have the
appropriate dimensions.

The ith fuzzy subsystem can be represented as follows:

Rl
i : If ξ1 is M l

i1Λ and ξp is M l
ip,

Then ẋ(t) = Ailx(t) + Bilui(t),
l = 1, 2, . . . , Ni, i = 1, 2, . . . , m. (2)

Thus the global model of the ith fuzzy sub-system is described by means of
the equation

ẋ(t) =
Ni∑
l=1

ηil(ξ(t)) (Ailx(t) + Bilui(t)), (3)

together with

ηil(t) =

n∏
ρ=1

µ
Ml

ρ(t)

Ni∑
l=1

n∏
ρ=1

µ
Ml

ρ(t)

, (4a)

0 ≤ ηil(t) ≤ 1,
Ni∑
l=1

ηil(t) = 1, (4b)

where µM l
ρ(t) denotes the membership function of the fuzzy state variable xρ

that belongs to the fuzzy set M l
ρ.

2.2 The Discrete-Time Case

Similarly, we can define the discrete switched T − S fuzzy model including
Nσ(k) pieces of rules

Rl
σ(k) : If ξ1 is M l

σ(k)1Λ and ξp is M l
σ(k)p,

Then x(k + 1) = Aσ(k)lx(k) + Bσ(k)luσ(k)(k), l = 1, 2, . . . , Nσ(k) (5)

where σ(k) : {0, 1,Λ} → {1, 2,Λ,m} is a sequence representing switching
signal {0, Z+} → {1, 2,Λ,m}.

In turn, the ith sub fuzzy system can be represented as follows:

Rl
i : If ξ1 is M l

i1Λ and ξp is M l
ip,

Then x(k + 1) = Ailx(k) + Bilui(k), (6)
l = 1, 2, . . . , Ni, i = 1, 2,Λ m.
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Therefore the global model of the ith sub fuzzy system is described by means
of the equation

x(k + 1) =
Ni∑
l=1

ηil(k) (Ailx(k) + Bilui(k)), (7)

together with

ηil(k) =

n∏
ρ=1

µM l
ρ(k)

Ni∑
l=1

n∏
ρ=1

µM l
ρ(k)

, 0 ≤ ηil(k) ≤ 1,

Ni∑
l=1

ηil(k) = 1. (8)

The representation modeling section is thus concluded.

3 New Stability Results for Switched Fuzzy Systems

First the respective definition for quadratic asymptotic stability of switched
nonlinear systems, e.g. see [2, 14, 24–26], and a related lemma in conjunction
with stability analysis re recalled.

Definition 3.1. The system (1) is said to be quadratic stable if there exist
a positive definite matrix P and a state-dependent switching law σ = σ(x)
such that the quadratic Lyapunov function V (x(t)) = xT (t)Px(t) satisfies
d
dtV (x(t)) < 0 for any x(t) �= 0 along the system state trajectory from arbitrary
initial conditions.

Remark 3.1. A apparently analogous definition can be stated for the discrete-
time case of system (5), and it is therefore omitted.

Lemma 3.1. Let aiji
(1 ≤ i ≤ m, 1 ≤ ji ≤ Ni) be a group of constants

satisfying
m∑

i=1

aiji
< 0, ∀ 1 ≤ ji ≤ Ni.

Then, there exists at least one i such that

aiji
< 0, 1 ≤ ji ≤ Ni.

Proof. It is trivial and therefore omitted. ��

3.1 Stability of Continuous-Time Switched Fuzzy Systems

First, the novel stability result for systems (1) with u ≡ 0 in the fuzzy system
representation is explored.
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Theorem 3.1. Suppose there exist a positive definite matrix P and constants
λijl

≥ 0, i = 1, 2, . . . , m, ji = 1, 2, . . . , Ni such that

Ni∑
i=1

λiji
(AT

iji
P + PAiji

) < 0, ji = 1, 2,Λ Ni, (9)

then the system (1) is quadratic stable under the switching law:

σ(k) = arg min{V̄i(x)
∆= max

ji

{xT (AT
iji

P + PAiji
)x < 0, ji = 1, 2,Λ Ni}} (10)

Proof. From inequality (9) it may well be inferred that

Ni∑
i=1

λiji
xT (AT

iji
P + PAiji

)x < 0, ji =1, 2,Λ Ni (11)

for any x �= 0. Notice that (11) holds true for any ji ∈ {1, 2,Λ Ni} and
λij ≥ 0. On the other hand, Lemma 3.1 asserts that there exists at least one
i such that

xT (AT
iji

P + PAiji
)x < 0, (12)

for any ji. Thus, the switching law (10) is a well-defined one. Next, the
time derivative of the respective quadratic [8, 10, 15, 19, 25] Lyapunov func-
tion V (x(t)) = xT (t)Px(t), is to be calculated:

d

dt
V (x(t)) = xT

⎡
⎣( Ni∑

l=1

ηilAil

)T

P + P

(
Ni∑
l=1

ηilAil

)⎤⎦x

=
Ni∑
l=1

ηilx
T
[
AT

ilP + PAil

]
x

Notice, here i = σ(x) is generated by means of switching law (10). By tak-
ing (4), (12) into account, one can deduce that dV (x(t))/dt < 0, x �= 0.
Hence system (1) is quadratic stable under switching law (10), which ends up
this proof. ��

Now the stability result for the more important case with u �= 0, is pre-
sented. It is pointed out that the parallel distributed compensation (PDC)
method for fuzzy controller design [22,23] is used for every fuzzy sub-system.
It is shown in the sequel how to design controllers to achieve quadratic sta-
bility in the closed loop and under the switching law.

Namely, local fuzzy controller and system (2) have the same fuzzy inference
premise variables:

Rl
ic : If ξ1 is M l

i1Λ and ξp is M l
ip,

Then ui(t) = Kilx(t), l = 1, 2,Λ Ni, i = 1, 2,Λ m. (13)
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Thus, the global control is

ui(t) =
Ni∑
l=1

ηilKilx(t). (14)

Then the global model of the ith sub fuzzy system is described by means
of the following equation:

ẋ =
Ni∑
l=1

ηil(t)
Ni∑
r=1

ηir (Ail + BilKir)x(t). (15)

Theorem 3.2. Suppose there exist a positive definite matrix P and constants
λijl

≥ 0, i = 1, 2, . . . , m, ϑi = 1, 2, . . . , Ni such that

Ni∑
i=1

λiji

[
(Aiji

+ Biji
Kiϑi

)T P + P (Aiji
+ Biji

Kiϑi
)
]

< 0, ji, ϑi = 1, 2,Λ Ni,

(16)

Then, the system (1) along with (13)–(14) is quadratic stable under the switch-
ing law:

σ(x) = arg min{V̄i(x)
∆= max

ji,ϑi

{xT [(Aiji
+ Biji

Kiϑi
)T P

+ P (Aiji
+ Biji

Kiϑi
)]x < 0, ji, ϑi = 1, 2,Λ Ni}} (17)

Proof. It is seen from (12) that

Ni∑
i=1

λiji
xT
[
(Aiji

+ Biji
Kiϑi

)T P + P (Aiji
+ Biji

Kiϑi
)
]
x < 0

jl, ϑl = 1, 2, . . . , Ni. (18)

for any x �= 0. Further, it should be noted that (18) holds for any ji, ϑi ∈
{1, 2,Λ Ni} and λiji

≥ 0. By virtue of Lemma 3.1, there exists at least one i
such that

xT
[
(Aiji

+ Biji
Kiϑi

)T P + P (Aiji
+ Biji

Kiϑi
)
]
x < 0

for any ji, ϑi. Thus the switching law (17) is a well-defined one. Via similar
calculations as in Theorem 3.1 using Lyapunov function V (x) = xT (t)P x(t),
on can find:

dV (x(t))
dt

= ẋT (t)Px(t) + xT (t)P ẋ(t)

=
Ni∑
l=1

Ni∑
r=1

ηilηirx
T (t)

[
(Ail + BilKir)T P + P (Ail + BilKir)

]
x(t)

in which i = σ(x) is given by law (17). Thus, system (1) along with (13)–(14)
is quadratic stable under switching law (17), and this completes the proof.
��
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3.2 Stability of Discrete-Time Switched Fuzzy Systems

Again first the case when u = 0 in system (5) is considered.

Theorem 3.3. Suppose there exist a positive definite matrix P and constants
λijl

≥ 0, i = 1, 2, . . . , m, ϑi = 1, 2, . . . , Ni such that

Ni∑
i=1

λiji
(AT

iji
PAiϑi

− P ) < 0, ji, ϑi = 1, 2,Λ Ni, (19)

then the system (5) is quadratic stable under the switching law:

σ(k) = arg min{V̄i(k)
∆=max

ji,ϑi

{xT (AT
iji

PAiϑi
− P )x < 0, ji, ϑi = 1, 2,Λ Ni}}

(20)

Proof. Similarly as for Theorem 3.1, from (19) it is inferred that

Ni∑
i=1

λiji
xT (AT

iji
PAiϑi

− P )x < 0, ji, ϑi =1, 2,Λ Ni

for any x �= 0. Then there exists at least an i such that

xT (AT
iji

PAiϑi
− P )x < 0,

for any ji, ϑi ∈ {1, 2,Λ Ni}. Now the time derivative of Lyapunov function
V (x(t)) = xT (t)Px(t) is calculated to give:

∆V (x(k)) = V (x(k + 1))− V (x(k))

= xT (k)

⎡
⎣( Ni∑

l=1

ηil(k)Ail

)T

P

(
Ni∑
r=1

ηiϑ(k)Aiϑ

)
− P

⎤
⎦x(k)

=
Ni∑
l=1

ηil

Ni∑
r=1

ηiρx
T (k)

[
AT

ilPAiϑ − P
]
x(k)

Hence the system (5) is quadratic stable under switching law (20), and this
completes the proof. ��

The more important case with u �= 0 in system (5) is considered next.
And again the PDC method for fuzzy controller design is used for every fuzzy
sub-system. Namely, it is observed that local fuzzy control and system (6)
have the same fuzzy inference premise variables:

Rl
ic : If ξ1 is M l

i1Λ and ξp is M l
ip,

Then ui(k) = Kilx(k), l = 1, 2,Λ Ni, i = 1, 2,Λ m. (21)
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Thus, the global control is

ui(k) =
Ni∑
l=1

ηilKilx(k). (22)

Then the global model of the ith sub fuzzy system is described by:

x(k + 1) =
Ni∑
l=1

ηil(k)
Ni∑
r=1

ηiϑ (Ail + BilKiϑ)x(k). (23)

Theorem 3.4. Suppose there exist a positive definite matrix P and λijl
≥ 0,

i = 1, 2, . . . , m, ϑi = 1, 2, . . . , Ni such that

Ni∑
i=1

λiji

[
(Aiji

+ Biji
Kiϑi

)T P (Aipi
+ Bipi

Kiqi
)− P

]
< 0

ji, ϑi, pi, qi = 1, 2,Λ Ni (24)

Then, the system (5) along with (21)–(22) is quadratic stable under the switch-
ing law:

σ(k) = arg min{V̄i(k)
∆= max

ji,ϑi,pi,qi

{xT [(Aiji
+ Biji

Kiϑi
)T P (Aipi

+ Bipi
Kiqi

)

− P ]x < 0, ji, ϑi, pi, qi = 1, 2,Λ Ni}}
(25)

Proof. It is very similar to that of Theorem 3.3 and thus omitted. ��

4 Illustrative Examples and Simulation Results

Results applying the above developed theory on two examples, one for the
continuous-time and one the discrete-time case, and the respective simulations
(e.g. using MathWorks software [27]) are given below.

4.1 A Continuous-Time Case of Autonomous System

Consider a continuous-time switched fuzzy system described as follows:

R1
1 : If x is M1

11, Then ẋ(t) = A11x(t)

R2
1 : If x is M2

11 , Then ẋ(t) = A12x(t)

R1
2 : If y is M1

21, Then ẋ(t) = A21x(t)

R2
2 : If y is M2

21 , Then ẋ(t) = A22x(t)
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where

A11 =
[
−17 −0.0567
4.93 −0.983

]
, A12 =

[
−10 0.216

−0.0132 −45.29

]
;

A21 =
[
−50 −0.042
0.008 −10

]
, A22 =

[
−40 −0.0867
0.047 −120

]
.

Above, the fuzzy sets M1
11,M

2
11,M

1
21,M

2
21, respectively, are represented by

means of the following membership functions:

µ1
11(x) = 1− 1

1 + e−2x
, µ2

11(x) =
1

1 + e−2x
;

µ1
21(y) = 1− 1

1 + e(−2(y−0.3))
, µ2

21(y) =
1

1 + e(−2(y−0.3))
.

For
2∑

i=1

λiji
(AT

iji
P + PAiji

) < 0, ji = 1, 2

by choosing λiji
= 1, one can find (e.g. ultimately by using LMI toolbox) the

following P matrix

P =
[
0.0159 0.0001
0.0001 0.0071

]
.

Then system is quadratic asymptotically stable under the following switch-
ing law

σ(x) = arg min{V̄i(x)
∆=max

ji

{xT (AT
iji

P + PAiji
)x < 0, ji = 1, 2}}.

Figure 1 above depicts the obtained simulation results for the controlled evo-
lution of system state variables when, at the initial time instant, the system
is perturbed by the state vector x(0) = [2 2]T .

4.2 A Cases of Discrete-Time Non-Autonomous System

Now, let consider a discrete-time switched fuzzy system that is represented as
follows:

R1
1 : If x(k) is M1

11, Then x(k + 1) = A11x(k) + B11u(k),

R2
1 : If x(k) is M2

11, Then x(k + 1) = A12x(k) + B12u(k),

R1
2 : If y(k) is M1

21, Then x(k + 1) = A21x(k) + B21u(k),

R2
2 : If y(k) is M2

21, Then x(k + 1) = A22x(k) + B22u(k),
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Fig. 1. The evolution time-histories for system state variables x1(t), x2(t) after the
perturbation by x(0) = [2 2]T at the initial time instant

where

A11 =
[

0 1
−0.0493 −1.0493

]
, A12 =

[
0 1

−0.0132 −0.4529

]
,

A21 =
[

0 1
−0.2 −0.1

]
, A22 =

[
0.2 1
−0.8 −0.9

]
;

B11 =
[

0
0.4926

]
, B21 =

[
0
1

]
, B12 =

[
0

0.1316

]
, B22 =

[
0
1

]
.

The above fuzzy sets M1
11,M

2
11,M

1
21,M

2
21, respectively, are represented by

means of the following membership functions:

µ1
11(x(k)) = 1− 1

1 + e−2x(k)
, µ2

11(x(k)) =
1

1 + e−2x(k)
,

µ1
21(y(k)) = 1− 1

1 + e(−2(y(k)−0.3))
, µ2

21(y(k)) =
1

1 + e(−2(y(k)−0.3))
.

The state feedback gains of subsystems are obtained as

K11 = [−0.131 − 0.1148], K12 = [−0.0623 − 2.302],
K21 = [1.8 1.9] , K22 = [−0.7 1.3].

For

2∑
i=1

λiji

[
(Aiji

+ Biji
Kiϑi

)T P (Aipi
+ Biji

Kiqi
)− P

]
< 0, ji, ϑi, pi, qi = 1, 2,
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Fig. 2. The evolution time-histories for system state variables x1(k), x2(k) after
the perturbation by x(0) = [5 1]T at the initial time instant

by choosing λiji
= 1, for the P matrix one can obtain the following result:

P =
[

0.3563 −0.0087
−0.0087 0.1780

]
.

Then, the system is asymptotically stable under the following switch-
ing law

σ(k) = arg min{V̄i(k)
∆
= max

ji,ϑi,pi,qi

{xT [(Aiji + BijiKiϑi
)T P (Aipi + BipiKiqi ) − P ]x < 0,

ji, ϑi, pi, qi = 1, 2}}.

Figure 2 below depicts the obtained simulation for the transients of controlled
system state variables when, at the initial time instant, the system is per-
turbed by the state vector x(0) = [5 1]T ; the sampling period was setup to
Ts = 0.05 s.

As known from the literature, the combined switching control along with
the state feedback gains does produce a reasonably varying control effort (see
Fig. 3) that can be sustained by actuators.

5 Conclusion

Innovated representation models for the class of switched fuzzy systems, both
continuous-time and discrete-time, based on Takagi–Sugeno fuzzy models were
proposed. For both cases, new sufficient conditions for quadratic asymptotic
stability of the control system with the given switching laws (Theorems 3.1
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Fig. 3. The evolution time-history of the switching based state-feedback gain control
of the plant system perturbed by x(0) = [5 1]T at the initial time instant

thru 3.4) have been derived via the common Lyapunov function approach. Fol-
lowing these new stability results, only the stability of a certain combination
of subsystem matrices has to be checked, which is easier to carry out.

On the grounds of introducing the appropriate switching laws the stabi-
lizing control in the state-variable dependent form has been synthesized for
both these cases of fuzzy switched systems. Simulation results demonstrate
that a control performance of considerable quality has been achieved in the
closed loop thus promising the applicability in real-world problems.

The twofold future research is envisaged towards, firstly, reducing the con-
servatism of the obtained theorems and, secondly, towards deriving more so-
phisticated thus delicate switching based control laws.
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Summary. We consider an extension to the linguistic summarization of time series
data proposed in our previous papers, in particular by introducing a new protoform
of the duration based summaries, that is more intuitively appealing. We summarize
trends identified here with straight segments of a piecewise linear approximation of
time series. Then we employ, as a set of features, the duration, dynamics of change
and variability, and assume different, human consistent granulations of their values.
The problem boils down to a linguistic quantifier driven aggregation of partial trends
that is done via the classic Zadeh’s calculus of linguistically quantified propositions.
We present a modification of this calculus using the new protoform of a duration
based linguistic summary. We show an application to linguistic summarization of
time series data on daily quotations of an investment fund over an eight year period,
accounting for the absolute performance of the fund.

1 Introduction

A linguistic data (base) summary, meant as a concise, human-consistent de-
scription of a (numerical) data set, was introduced by Yager [18] and then
further developed by Kacprzyk and Yager [5], and Kacprzyk et al. [8]. The
contents of a database is summarized via a natural language like expression
semantics provided in the framework of Zadeh’s calculus of linguistically quan-
tified propositions [19]. Since data sets are usually large, it is very difficult for
a human being to capture and understand their contents. As natural language
is the only fully natural means of articulation and communication for a human
being, such linguistic descriptions are the most human consistent.

In this paper we consider a specific type of data, namely time series. In this
context it might be good to obtain a brief, natural language like description
of trends present in the data on, e.g., stock exchange quotations, sales, etc.
over a certain period of time.

Though statistical methods are widely used, we wish to derive (quasi)
natural language descriptions to be considered to be an additional form of data

J. Kacprzyk et al.: On Linguistic Summarization of Numerical Time Series Using Fuzzy Logic

with Linguistic Quantifiers, Studies in Computational Intelligence (SCI) 109, 169–184 (2008)
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description of a remarkably high human consistency. Hence, our approach is
not meant to replace the classical statistical analyses but to add a new quality.

The summaries of time series we propose refer in fact to the summaries
of trends identified here with straight line segments of a piece-wise linear
approximation of time series. Thus, the first step is the construction of such
an approximation. For this purpose we use a modified version of the simple,
easy to use Sklansky and Gonzalez algorithm presented in [16].

Then we employ a set of features (attributes) to characterize the trends
such as the slope of the line, the fairness of approximation of the original data
points by line segments and the length of a period of time comprising the
trend.

Basically the summaries proposed by Yager are interpreted in terms of
the number or proportion of elements possessing a certain property. In the
framework considered here a summary might look like: “Most of the trends
are short” or in a more sophisticated form: “Most long trends are increasing.”
Such expressions are easily interpreted using Zadeh’s calculus of linguistically
quantified propositions. The most important element of this interpretation is
a linguistic quantifier exemplified by “most.” In Zadeh’s [19] approach it is
interpreted in terms of a proportion of elements possessing a certain property
(e.g., a length of a trend) among all the elements considered (e.g., all trends).

In Kacprzyk, Wilbik and Zadrożny [9] we proposed to use Yager’s linguistic
summaries, interpreted in the framework of Zadeh’s calculus of linguistically
quantified propositions, for the summarization of time series. In our further
papers (cf. Kacprzyk et al. [11–13]) we proposed, first, another type of sum-
maries that does not use the linguistic quantifier based aggregation over the
number of trends but over the time instants they take altogether. For ex-
ample, such a summary can be: “Increasing trends took most of the time” or
“From all increasing trends, trends of a low variability took most of the time.”
Such summaries do not directly fit the framework of the original Yager’s ap-
proach and to overcome this difficulty we generalize our previous approach
by modeling the linguistic quantifier based aggregation both over the number
of trends as well over the time they take using first the Sugeno integral and
then the Choquet integral [10, 14]. All these approaches have been proposed
using a unified perspective given by Kacprzyk and Zadrożny [7] that is based
on Zadeh’s [20] protoforms.

In this paper we employ the classic Zadeh’s calculus of linguistically quan-
tified propositions. However, in comparison to our source paper (Kacprzyk
et al. [11]) we propose here a new form of the protoform of duration based
linguistic summaries, that is more intuitively appealing. We show results of
an application to data on daily quotations of a mutual (investment) fund over
an eight year period.

The paper is in line with some modern approaches to a human consistent
summarization of time series – cf. Batyrshin and his collaborators [1, 2], or
Chiang et al. [3] but we use a different approach.
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One should mention an interesting project coordinated by the University
of Aberdeen, UK, SumTime, an EPSRC Funded Project for Generating Sum-
maries of Time Series Data1. Its goal is also to develop a technology for
producing English summary descriptions of a time-series data set using an in-
tegration of time-series and natural language generation technology. Linguis-
tic summaries obtained related to wind direction and speed are, cf. Sripada
et al. [17]:

– WSW (West of South West) at 10–15 knots increasing to 17–22 knots
early morning, then gradually easing to 9–14 knots by midnight

– During this period, spikes simultaneously occur around 00:29, 00:54, 01:08,
01:21, and 02:11 (o’clock) in these channels

They do provide a higher human consistency as natural language is used
but they capture imprecision of natural language to a very limited extent. In
our approach this will be overcome to a considerable extent.

2 Temporal Data and Trend Analysis

We identify trends as linearly increasing, stable or decreasing functions, and
therefore represent given time series data as piecewise linear functions of some
slope (intensity of an increase and decrease). These are partial trends as a
global trend concerns the entire time span. There also may be trends that
concern more than a window taken into account while extracting partial trends
by using the Sklansky and Gonzalez [16] algorithm.

We use the concept of a uniform partially linear approximation of a time
series. Function f is a uniform ε-approximation of a set of points {(xi, yi)}, if
for a given, context dependent ε > 0, there holds

∀i : |f(xi)− yi| ≤ ε (1)

and if f is linear, then such an approximation is a linear uniform
ε-approximation.

We use a modification of the well known Sklansky and Gonzalez [16]
algorithm that finds a linear uniform ε-approximation for subsets of points
of a time series. The algorithm constructs the intersection of cones starting
from point pi of the time series and including a circle of radius ε around the
subsequent points pi+j , j = 1, 2, . . . , until the intersection of all cones starting
at pi is empty. If for pi+k the intersection is empty, then we construct a new
cone starting at pi+k−1. Figure 1a, b presents the idea of the algorithm. The
family of possible solutions is indicated as a gray area. For other algorithms,
see, e.g., [15].

1 http://www.csd.abdn.ac.uk/research/sumtime/



www.manaraa.com

172 J. Kacprzyk et al.

First, denote:p_0 – a point starting the current cone, p_1 – the last point
checked in the current cone, p_2 – the next point to be checked, Alpha_01 –
a pair of angles (γ1, β1), meant as an interval, that defines the current cone
as in Fig. 1a, Alpha_02 – a pair of angles of the cone starting at p_0 and
inscribing the circle of radius ε around p_2 (cf. (γ2, β2) in Fig. 1a), function
read_point() reads a next point of data series, function find() finds a pair

(a) The intersection of the cones is in-
dicated by the dark grey area

(b) A new cone starts in point p2

Fig. 1. An illustration of the algorithm for the uniform ε-approximation

read_point(p_0);

read_point(p_1);

while(1) {

p_2=p_1;

Alpha_02=find();

Alpha_01=Alpha_02;

do

{

Alpha_01 = Alpha_01 ∩ Alpha_02;

p_1=p_2;

read_point(p_2);

Alpha_02=find();

} while(Alpha_01 ∩ Alpha_02 �= ∅);
save_found_trend();

p_0=p_1;

p_1=p_2;

}

Fig. 2. Pseudocode of the modified Sklansky and Gonzalez [16] algorithm for
extracting trends
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of angles of the cone starting at p_0 and inscribing the circle of radius ε
around p_2. Then, a pseudocode of the algorithm that extracts trends is given
in Fig. 2.

The bounding values of Alpha_02 (γ2, β2), computed by function find()
correspond to the slopes of two lines tangent to the circle of radius ε around
p2 = (x2, y2) and starting at p0 = (x0, y0). Thus, if ∆x = x0 − x2 and
∆y = y0 − y2 then:

γ1 = arctg

[(
∆x ·∆y − ε

√
(∆x)2 + (∆y)2 − ε2

)/(
(∆x)2 − ε2

)]

γ2 = arctg

[(
∆x ·∆y + ε

√
(∆x)2 + (∆y)2 − ε2

)/(
(∆x)2 − ε2

)]

The resulting linear ε-approximation of a group of points p_0, . . . ,p_1
is either a single segment, chosen as, e.g., a bisector of the cone, or one that
minimizes the distance (e.g., the sum of squared errors, SSE) from the ap-
proximated points, or the whole family of possible solutions, i.e., the rays of
the cone.

3 Dynamic Characteristics of Trends

In our approach, while summarizing trends in time series data, we consider
the following three aspects:

– Dynamics of change
– Duration
– Variability

and it should be noted that by trends we mean here global trends, concern-
ing the entire time series (or some, probably a large, part of it), not partial
trends concerning a small time span (window) taken into account in the (par-
tial) trend extraction phase via the Sklansky and Gonzales [16] algorithm
mentioned above.

In what follows we will briefly discuss these factors.

3.1 Dynamics of Change

Under the term dynamics of change we understand the speed of changes. It
can be described by the slope of a line representing the trend, (cf. any angle η
from the interval 〈γ, β〉 in Fig. 1a). Thus, to quantify dynamics of change we
may use the interval of possible angles η ∈ 〈−90; 90〉 or their trigonometrical
transformation.

However it might be impractical to use such a scale directly while describ-
ing trends. Therefore we may use a fuzzy granulation in order to meet the
users’ needs and task specificity. The user may construct a scale of linguistic
terms corresponding to various directions of a trend line as, e.g.:
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Fig. 3. A visual representation of angle granules defining the dynamics of change

– Quickly decreasing
– Decreasing
– Slowly decreasing
– Constant
– Slowly increasing
– Increasing
– Quickly increasing

Fig. 3 illustrates the lines corresponding to the particular linguistic terms.
In fact, each term represents a fuzzy granule of directions. In Batyrshin

et al. [1, 2] there are presented many methods of constructing such a fuzzy
granulation. The user may define a membership functions of particular lin-
guistic terms depending on his or her needs.

We map a single value α (or the whole interval of angles correspond-
ing to the gray area in Fig. 1b) characterizing the dynamics of change of a
trend identified using the algorithm shown as a pseudocode in Fig. 2 into
a fuzzy set (linguistic label) best matching a given angle. We can use, for
instance, some measure of a distance or similarity, cf. the book by Cross and
Sudkamp [4]. Then we say that a given trend is, e.g., “decreasing to a degree
0.8,” if µdecreasing(α) = 0.8, where µdecreasing is the membership function of
a fuzzy set representing “decreasing” that is a best match for angle α.



www.manaraa.com

On Linguistic Summarization of Numerical Time Series 175

Fig. 4. An example of a membership function describing the term “long” concerning
the trend duration

3.2 Duration

Duration describes the length of a single trend, meant as a linguistic variable
and exemplified by a “long trend” defined as a fuzzy set whose membership
function may be as in Fig. 4 where the time axis is divided into appropriate
units.

The definitions of linguistic terms describing the duration depend clearly
on the perspective or purpose assumed by the user.

3.3 Variability

Variability refers to how “spread out” (“vertically,” in the sense of values taken
on) a group of data is. The following five statistical measures of variability
are widely used in traditional analyses:

– The range (maximum–minimum). Although the range is computationally
the easiest measure of variability, it is not widely used, as it is based on
only two data points that are extreme. This make it very vulnerable to
outliers and therefore may not adequately describe the true variability.

– The interquartile range (IQR) calculated as the third quartile (the third
quartile is the 75th percentile) minus the first quartile (the first quartile
is the 25th percentile) that may be interpreted as representing the middle
50% of the data. It is resistant to outliers and is computationally as easy
as the range.

– The variance is calculated as
∑

i(xi−x̄)2

n , where x̄ is the mean value.
– The standard deviation – a square root of the variance. Both the variance

and the standard deviation are affected by extreme values.
– The mean absolute deviation (MAD), calculated as

∑
i |xi−x̄|

n . It is not fre-
quently encountered in mathematical statistics. This is essentially because
while the mean deviation has a natural intuitive definition as the “mean
deviation from the mean” but the introduction of the absolute value makes
analytical calculations using this statistic much more complicated.

We propose to measure the variability of a trend as the distance of the
data points covered by this trend from a linear uniform ε-approximation (cf.
Sect. 2) that represents a given trend. For this purpose we propose to employ a
distance between a point and a family of possible solutions, indicated as a gray
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cone in Fig. 1a. Equation (1) assures that the distance is definitely smaller
than ε. We may use this information for the normalization. The normalized
distance equals 0 if the point lays in the gray area. In the opposite case it is
equal to the distance to the nearest point belonging to the cone, divided by ε.
Alternatively, we may bisect the cone and then compute the distance between
the point and this ray.

Similarly as in the case of dynamics of change, we find for a given value
of variability obtained as above a best matching fuzzy set (linguistic label)
using, e.g., some measure of a distance or similarity, cf. the book by Cross
and Sudkamp [4]. Again the measure of variability is treated as a linguistic
variable and expressed using linguistic terms (labels) modeled by fuzzy sets
defined by the user.

4 Linguistic Data Summaries

A linguistic summary is meant as a (usually short) natural language like sen-
tence (or some sentences) that subsumes the very essence of a set of data
(cf. Kacprzyk and Zadrożny [6,7]). This data set is numeric and usually large,
not comprehensible in its original form by the human being. In Yager’s ap-
proach (cf. Yager [18], Kacprzyk and Yager [5], and Kacprzyk et al. [8]) the
following perspective for linguistic data summaries is assumed:

– Y = {y1, . . . , yn} is a set of objects (records) in a database, e.g., the set
of workers;

– A = {A1, . . . , Am} is a set of attributes characterizing objects from Y ,
e.g., salary, age, etc. in a database of workers, and Aj(yi) denotes a value
of attribute Aj for object yi.

A linguistic summary of a data set consists of:

– A summarizer P , i.e., an attribute together with a linguistic value (fuzzy
predicate) defined on the domain of attribute Aj (e.g., “low salary” for
attribute “salary”).

– A quantity in agreement Q, i.e., a linguistic quantifier (e.g., most).
– Truth (validity) T of the summary, i.e., a number from the interval [0, 1]

assessing the truth (validity) of the summary (e.g., 0.7); usually, only
summaries with a high value of T are interesting.

– Optionally, a qualifier R, i.e., another attribute together with a linguistic
value (fuzzy predicate) defined on the domain of attribute Ak determining
a (fuzzy subset) of Y (e.g., “young” for attribute “age”).

Thus, a linguistic summary may be exemplified by

T (most of employees earn low salary) = 0.7 (2)

or, in a richer (extended) form, including a qualifier (e.g., young), by

T (most of young employees earn low salary) = 0.9 (3)
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Thus, basically, the core of a linguistic summary is a linguistically quanti-
fied proposition in the sense of Zadeh [19] which, for (2), may be written as

Qy’s are P (4)

and for (3), may be written as

QRy’s are P (5)

Then, T , i.e., the truth (validity) of a linguistic summary, directly corre-
sponds to the truth value of (4) or (5). This may be calculated by using either
original Zadeh’s calculus of linguistically quantified propositions (cf. [19]), or
other interpretations of linguistic quantifiers. In the former case, the truth
values (from [0, 1]) of (4) and (5) are calculated, respectively, as

T (Qy’s are P ) = µQ

(
1
n

n∑
i=1

µP (yi)

)
(6)

T (QRy’s are P ) = µQ

(∑n
i=1(µR(yi) ∧ µP (yi))∑n

i=1 µR(yi)

)
(7)

where ∧ is the minimum operation (more generally it can be another ap-
propriate operation, notably a t-norm), and Q is a fuzzy set representing
the linguistic quantifier in the sense of Zadeh [19], i.e., µQ : [0, 1] −→ [0, 1],
µQ(x) ∈ [0, 1]. We consider regular non-decreasing monotone quantifiers such
that:

µ(0) = 0, µ(1) = 1 (8)
x1 ≤ x2 ⇒ µQ(x1) ≤ µQ(x2) (9)

They can be exemplified by “most” given as in (10):

µQ(x) =

⎧⎨
⎩

1 for x > 0.8
2x− 0.6 for 0.3 < x < 0.8
0 for x < 0.3

(10)

5 Protoforms of Linguistic Trend Summaries

It was shown by Kacprzyk and Zadrożny [7] that Zadeh’s [20] concept of a
protoform is convenient for dealing with linguistic summaries. This approach
is also employed here.

Basically, a protoform is defined as a more or less abstract prototype (tem-
plate) of a linguistically quantified proposition. Then, the summaries men-
tioned above might be represented by two types of the protoforms:

– Frequency based summaries:
• A protoform of a short form of linguistic summaries:

Q trends are P (11)
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and exemplified by:

Most of trends are of a large variability.

• A protoform of an extended form of linguistic summaries:

QR trends are P (12)

and exemplified by:

Most of slowly decreasing trends are of a large variability.

– Duration based summaries:
• A protoform of a short form of linguistic summaries:

(From all trends) P trends took Q of the time (13)

and exemplified by:

(From all trends) trends of a large variability took most of the
time.

• A protoform of an extended form of linguistic summaries:

From all R trends, P trends took Q of the time (14)

and exemplified by:

From all slowly decreasing trends, trends of a large variability
took most of the time.

It should be noted that these summaries should be properly understood
as, basically, that the (short, partial) trends, that have a large variability
altogether took most of the time.

The truth values of the above types and forms of linguistic summaries
will be found using the classic Zadehs calculus of linguistically quantified
propositions as it is effective and efficient, and provides the best conceptual
framework within which to consider a linguistic quantifier driven aggregation
of partial trends that is the crucial element of our approach.

6 The Use of Zadeh’s Calculus of Linguistically
Quantified Propositions

Using Zadeh’s [19] fuzzy logic based calculus of linguistically quantified propo-
sitions, a (proportional, nondecreasing) linguistic quantifier Q is assumed to
be a fuzzy set defined in the unit interval [0, 1] as, e.g. (10).
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The truth values (from [0,1]) of (11) and (12) are calculated, respec-
tively, as

T (Qy’s are P ) = µQ

(
1
n

n∑
i=1

µP (yi)

)
(15)

T (QRy’s are P ) = µQ

(∑n
i=1(µR(yi) ∧ µP (yi))∑n

i=1 µR(yi)

)
(16)

where ∧ is the minimum operation.
The computation of truth values of duration based summaries is more

complicated and requires a different approach. Namely, using the Zadeh’s
calculus for frequency based summaries we compute a proportion of trends,
that satisfy condition “trend is P ,” to all trends, in a simple form case. Here,
for duration based summaries, while analyzing a summary “(From all trends)
P trends took Q of the time” we should compute the proportion of the time
during which the condition “trend is P” is satisfied to the time taken by all
trends. Therefore, we should compute the time that is taken by those trends
for which “trend is P” is valid. In a crisp case, when “trend is P” is either to
degree 1 or 0, it is obvious, as we can use either the whole time taken by this
trend or none of this time, respectively. However, what should we do if “trend
is P” is to some degree? We propose to take only a part of the time defined
by the degree to which “trend is P .” Specifically, we compute this time as
µ(yi)tyi

, where tyi
is the duration of trend yi. The time taken by all trends

is simply our horizon (sum of times (durations) taken by all trends). Finally,
having this proportion, we may compute to which degree the proportion of
the time taken by those trends which “trend is P” to all the time, is Q. A
similar line of thought might be followed for the extended form of linguistic
summaries.

The truth value of the short form of duration based summaries (13) is
calculated as

T (From all y’s, Py’s took Q time) = µQ

(
1
T

n∑
i=1

µP (yi)tyi

)
(17)

where T is the total time of the summarized trends and tyi
is the duration of

the ith trend.
The truth value of the extended form of summaries based on duration (14)

is calculated as

T (From all Ry’s, Py’s took Q time) = µQ

(∑n
i=1(µR(yi) ∧ µP (yi))tyi∑n

i=1 µR(yi)tyi

)
(18)

where tyi
is the duration of the ith trend.

Both the fuzzy predicates P and R are assumed above to be of a rather
simplified, atomic form referring to just one attribute. They can be extended
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to cover more sophisticated summaries involving some confluence of various,
multiple attribute values as, e.g, “slowly decreasing and short.”

Alternatively, we may obtain the truth values of (13) and (14) if we divide
each trend which takes tyi

time units into tyi
trends, each lasting one time

unit. For this new set of trends we use frequency based summaries with the
truth values defined in (15) and (16).

7 Numerical Experiments

The method was tested on real data of daily quotations, from April 1998 to
December 2006, of an investment fund that invests at most 50% of assets in
shares, cf. Fig. 5, with the starting value of one share equal to PLN 10.00
and the final one equal to PLN 45.10 (PLN stands for the Polish Zloty); the
minimum was PLN 6.88 while the maximum was PLN 45.15, and the biggest
daily increase was PLN 0.91, while the biggest daily decrease was PLN 2.41.

It should be noted that the example shown below is meant only to illus-
trate the methods proposed by analyzing the absolute performance of a given
investment fund. We do not deal here with a presumably more common way of
analyzing an investment fund by relating its performance versus a benchmark
exemplified by an average performance of a group of (similar) funds, a stock
market index or a synthetic index reflecting, for instance, bond versus stock
allocation.

For ε = 0.25 (PLN 0.25), we obtained 255 extracted trends, ranging from
2 to 71 time units (days). The histogram of duration is in Fig. 6.

Fig. 5. A view of the original data



www.manaraa.com

On Linguistic Summarization of Numerical Time Series 181

Fig. 6. Histogram of duration of trends

Fig. 7. Histogram of angles describing dynamic of change

Figure 7 shows the histogram of angles (dynamics of change) and the
histogram of variability of trends (in %) is in Fig. 8.

Some interesting duration based summaries obtained by using the method
proposed, employing the classic Zadeh’s calculus of linguistically quantified
propositions, and for different granulations of the dynamics of change, dura-
tion and variability, are:

– For seven labels for the dynamics of change (quickly increasing, increas-
ing, slowly increasing, constant, slowly decreasing, decreasing and quickly
decreasing), five labels for the duration (very long, long, medium, short,
very short) and the variability (very high, high, medium, low, very low):
• From all trends, constant trends took almost all of the time, T = 0.639
• From all trends, trends of a low variability took at least a half of the

time are, T = 0.873
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Fig. 8. Histogram of variability of trends

• From all decreasing trends, trends of a very low variability took most
of the time, T = 0.989

• From all trends with a low variability, constant trends took almost all
of the time, T = 1

• From all trends with a very high variability, constant trends took most
of the time, T = 0.94

– Five labels for the dynamics of change (increasing, slowly increasing, con-
stant, slowly decreasing, decreasing), three labels for the duration (short,
medium, long) and five labels for the variability (very high, high, medium,
low, very low):
• From all trends, constant trends took most of the time, T = 0.692
• From all trends, trends of a medium length took most of the time,

T = 0.506
• From all decreasing trends, trends of a very low variability took most

of the time, T = 0.798
• From all constant trends, trends of a low variability took most of the

time, T = 0.5
• From all trends with a low variability, constant trends took most of

the time, T = 0.898

8 Concluding Remarks

First, we presented a new, more intuitively appealing, human consistent and
semantically simpler protoform of the duration based summaries. Then, using
this new protoform, we modified the basic Zadeh’s calculus of linguistically
quantified propositions that is used for a linguistic quantifier driven aggrega-
tion of partial trends that is crucial for the derivation of linguistic summaries
of time series. We showed an application to linguistic summarization of time
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series data on daily quotations of an investment fund over an eight year period.
We concentrated on the analysis of the absolute performance of the investment
fund.
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Summary. We have previously used Markov models to describe movements of
patients between hospital states; these may be actual or virtual and described by a
phase-type distribution. Here we extend this approach to a Markov reward model
for a healthcare system with constant size. This corresponds to a situation where
there is a waiting list of patients so that the total number of in-patients remains at a
constant level and all admissions are from the waiting list. The distribution of costs
is evaluated for any time and expressions derived for the mean cost. The approach is
then illustrated by determining average cost at any time for a hospital system with
two states: acute/rehabilitative and long-stay.

In addition we develop a Markov model to determine patient numbers and costs
at any time where, again, there is a waiting list, so admissions are taken from this
list, but we now allow a fixed growth which declines to zero as time tends to infinity.
As before, the length of stay is described by a phase-type distribution, thus enabling
the representation of durations and costs in each phase within a Markov framework.
As an illustration, the model is used to determine costs over time for a four phase
model, previously fitted to data for geriatric patients. Such an approach can be used
to determine the number of patients and costs in each phase of hospital care and a
decision support system and intelligent patient management tool can be developed
to help hospital staff, managers and policy makers, thus facilitating an intelligent
and systematic approach to the planning of healthcare and optimal use of scarce
resources.

1 Introduction

Healthcare costs are increasing, as are the proportions of elderly people. This
means that the care of geriatric patients is becoming an increasingly impor-
tant problem, requiring careful planning and urgent attention. Old people are
heavy users of hospital care largely because most people now live to die in old
age. Using the Oxford Record Linkage study, [5] have shown that “generally,

S. McClean et al.: Using Markov Models for Decision Support in Management of High Occu-
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hospital admissions either occurred in the years immediately before death
and increased in the final year of life or were confined to that last year”. With
increasing longevity, old people, with their multiple medical, social and psy-
chological problems, will inevitably place increasing demands on the health
care system.

An intelligent model-based approach to the planning of healthcare, based
on large-scale data routinely collected, is essential to facilitate understanding
of the whole process and develop a holistic method for costing and perfor-
mance measurement of hospital use. Healthcare planning should therefore
include ways of predicting patient numbers and future costs of geriatric ser-
vices, otherwise policies may lead to an improvement in hospital care in the
short-term with a subsequent build-up of patient numbers and costs at future
time points. For example, patients who are not sufficiently rehabilitated at
the proper time may end up becoming long-stay and block beds that could
be better utilised for acute care.

In previous work we have developed a model of patient flows within a
hospital, where patients are initially admitted to an acute or rehabilitative
state from which they are either discharged or die or are converted to a
long-stay state [4]. Long-stay patients are discharged or die at a slower rate.
Patients may be thought of as progressing through stages of acute care, reha-
bilitation and long-stay care where most patients are eventually rehabilitated
and discharged. Thus an acute phase may be relatively quick, lasting for days
or possibly weeks. A long-stay phase, on the other hand, may involve patients
remaining in hospital for months, or even years. These patients may be very
consuming of resources and thereby distort the performance statistics and cost
implications [7].

In this chapter we discuss the use of a Markov reward model to cost the
movements of patients within a hospital department. Initially we assume a
constant number of beds in the department. This corresponds to a situation
where there is a waiting list of patients so that the total number of in-patients
remains at a constant level and all admissions are from the waiting list. Costs
are assigned according to the state the patient has reached, where state here
corresponds to different phases of care and recovery. Thus by assigning dif-
ferential costs to the different states of the model, we may estimate the costs
involved in treating people with a range of health and social problems. Using
local estimates of transition rates and costings, hospital planners may thus
identify cost-effective strategies. In addition we develop a Markov model to
determine patient numbers and costs at any time where, again, there is a
waiting list, so admissions are taken from this list, but we now allow a fixed
growth in the number of beds available, which declines to zero as time tends
to infinity.

The model we consider is a k-state discrete time Markov model, or phase
type model [2], with costs associated with each time unit spent by each indi-
vidual in each grade. Admissions to the system occur to each state to replace
discharges, and we assume that the initial numbers of patients in each state
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of the system is known. There is also an absorbing state, usually discharge or
death. Then we seek to find the distribution, in particular the means, of costs
incurred in each grade of the system over time. In fact, this model is a gener-
alization of that developed in our previous chapter [10] where we considered
a 2-grade system (acute and long-stay in hospital) with no admissions. We
were then only interested in the spend-down costs incurred over time if there
are no further admissions; now we would like to determine the full system
costs, of new admissions and current patients, for situations where there are
a number of grades in hospital as well as in the community. The number of
states, and associated transition parameters, are found in each case by fitting
phase-type models to patient time spent in hospital and the community re-
spectively, using maximum likelihood estimation, as previously described [3].
Here, we also extend previous work by [6] that previously fitted a model with
two phases and fixed size to geriatric patient data.

This approach can be used to develop decision support system and in-
telligent patient management tool [1]. Since the idea of a diagnostic system
was first proposed by [8] and the first experimental prototype was described
by [13], numerous clinical decision support system have been developed to
help clinical staff in making various clinical decisions. Using our model a deci-
sion support system is proposed which can help hospital staff, managers and
policy makers in the planning and optimal use of scarce healthcare resources.

2 The Markov Model with Fixed Size

We consider patients as moving according to a discrete time Markov process
where there is a cost associated with each state. The states are S1, . . . ,Sk

where Sk+1 is an absorbing state, generally discharge or death. As we have
assumed previously for the two state system (k = 2), we consider a waiting
list of patients so that the total number of in-patients remains at a constant
level and all admissions are from the waiting list [6]. We here extend these
results to any number of states; for example, [2] found four states to be ap-
propriate for such data. Our approach here differs from previous work in that
we have previously modelled the number of patients in each state whereas we
here model the number of beds occupied by patients in each state, along with
associated costs. We also generalise the previous results to the case where we
can have any number of states. Between one time point and the next we have
a probability of the bed changing from being occupied by a patient in state
Si to a patient in state Si+1 for i = 1, . . . , k − 1. If a patient is discharged
from bed Si then the bed changes from being occupied by a patient in state
Si to being occupied by a patient in state S1 i.e. we assume that all patients
are admitted to state S1 which typically represents an initial treatment and
assessment phase.
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The transition matrix of probabilities of a patient moving between one
state and another between successive time points for states S1, . . . ,Sk is then:

A =

⎛
⎜⎜⎜⎜⎝.

1−m1 − d1 m1 0 0 . . 0
0 1−m2 − d2 m2 0 . . 0
0 0 1−m3 − d3 m3 . . 0
. . . . . . .
0 0 0 0 . . 1− dk

⎞
⎟⎟⎟⎟⎠

while the transition matrix that describes changes between bed states is
given by:

B =

⎛
⎜⎜⎜⎜⎝.

1−m1 m1 0 0 . . 0
d2 1−m2 − d2 m2 0 . . 0
d3 0 1−m3 − d3 m3 . . 0
. . . . . . .

dk 0 0 0 . . 1− dk

⎞
⎟⎟⎟⎟⎠

Here, mi = Prob {a patient is in state Si+1 at time t+1| patient is in state
Si at time t} and di = Prob {a patient is in state Si+1, i.e. discharged, at time
t+1| patient is in state Si at time t} for i = 1, . . . , k, i.e. mi is the probability
of moving from a grade to the next one and di is the probability of discharge
from state Si. We note that B is a stochastic matrix, representing the Markov
Chain for movements between bed states, as represented in Fig. 1.

Previously we have assumed that patients are admitted according to a
Poisson process [12]. This is appropriate when the hospital is not work-
ing to full capacity and there are empty beds to accommodate newly ar-
riving patients. However, in practice, this is often not the case and newly
arriving patients may have to queue for admission to hospital, typically in a
waiting list. In addition, there may be some growth in bed availability over
time to accommodate such queuing patients. We therefore assume in this
chapter that all admissions are from the waiting list and are admitted to
state S1, typically a state where patients are assessed and may receive some
initial treatment. We also assume that initially there are νi patients in state
i for i = 1, . . . k.

dkd2
S1 S2 Skm1 m2 mk-1

1−m1 1−m2−d2 1−dk

G(t)

Fig. 1. Movements between bed states for the Markov model with fixed size
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Then, the probability generating function (p.g.f.) is given by:

G(Z, t) =
k∏

i=1

(1 + ViBtZ)νi . (1)

Where Bt is the t-step transition matrix describing changes in bed occupancy
over time t,

Vi = (0, . . . , 1, . . . , 0) is the row vector with 1 in the ith position, and
Z = {Zi} where Zi = (1− zi).

This equation represents the movement of bed occupancy between the dif-
ferent states S1, . . . ,Sk for the initial bed occupancy distribution represented
by the νi patients in state i for i = 1, . . . k between time 0 and time t. The
initial patients may therefore be regarded as being replaced by time t in one
of the other states according to a multinomial distribution with transition
matrix ViBt.

We now assume a cost ci/time unit for a patient in state Si. In this case,
the p.g.f. is given by:

H(Z, t) =
k∏

i=1

(1 + ViBtZc)νi . (2)

Where Zc = {1− zci
i }.

The cost of patients at time t is then given by:

C(t) =
k∑

i=1

viViBtc

=
k∑

i=1

νi

k∑
j=1

cjBij(t) where Bt = Bij(t) (3)

In steady state, the numbers of patients (beds) in state Si are therefore
from a multinomial distribution (N, π) where N is the total number of patients
(beds) i.e.

N =
∑k

i=1 vi and π = (π1, . . . , πk) is the vector of steady state probabili-
ties of being in each (bed) state in steady state. So π is the solution of:

πB = π.

Solving this equation, we obtain:

πi+1 =
mi

mi+1 + di+1
πi for i = 1, . . . , k

Where we put mk+1 = 0.

Here π1 =
{

1 + m1
m2+d2

+ · · ·+ mk−1
dk

}−1

.
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The corresponding costs in steady state are then given by:

C∞ =
k∑

i=1

ciπi = c.π.

We can use these expressions to evaluate the number and costs of patients
in each state over time and in steady state. This is illustrated in the following
example.

2.1 Example 1: A Two State Model

We have previously described a two state Markov model [10] for a hospital
system where the states are acute/rehabilitative and long-stay. We now extend
this to a two-state system with Poisson recruitment (Fig. 2).

The transition matrix for daily transitions of patients between the states
S1 and S2 is here:

A =
(

1− v − r v
0 1− d

)
.

while the transition matrix for daily transitions of beds between the states S1

and S2 is:

B =
(

1− v v
d 1− d

)
.

Also, v = (a, l), where a is the initial number of acute/rehabilitative pa-
tients and l is the initial number of long-stay patients. The daily cost for the
acute/rehabilitative state is c and the daily cost of the long-stay state is k.

Then the mean cost at time t is:

C(t) = (a, l)Bt

(
c
k

)

= (a, l)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

d

v + d

v

v + d
d

v + d

v

v + d

⎞
⎟⎟⎠+ (1− v − d)t

⎛
⎜⎜⎝

v

v + d

− v

v + d
− d

v + d

d

v + d

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭
(

c
k

)

=
(a + l)(dc+vk)

v + d
+ (1− v − d)t (av − ld)(c− k)

v + d

Acute/
Rehabilitative

Long-stay

r

v

d

Fig. 2. A two state hospital model



www.manaraa.com

Management of High Occupancy Hospital Care 193

The mean cost at time t = ∞ is thus

C∞ = πc

=
(a + l)(dc+vk)

v + d
.

Using the data presented in Table 1, which are extracted from our previous
work, we obtain, the average cost per day at a number of time points, as is
illustrated in Table 2.

As we can see in Fig. 3, the steady state, which is relatively much cheaper,
is attained very slowly. In steady state for these data, there are 68 patients in
acute/rehabilitative care and 32 in long stay, so lower costs are achieved by

Table 1. Data for the two state model

R V D A L C K

0.02 0.01 0.001 100 0 £100 £50

Table 2. Costs for a number of time points for the two state model

T 1 year 2 years 5 years 10 years ∞
C(t) £11,087 £10,204 £9,813 £9,800 £9,800

Fig. 3. Number of admissions each year
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having more long-stay patients and less admissions, as is illustrated in Fig. 2.
This is clearly not very desirable and illustrates the point that lowering costs
may be achieved at the expense of reduced throughput and longer waiting
lists. This observation at first seems rather counter-intuitive, as one might
expect that high throughput would lead to lower costs. However, here the
high throughput is mainly coming from short-stay patients while longer-stay
patients are accumulating costs.

3 The Markov Model with Constant Growth

In this section we extend the approach of the previous section to a system,
where again we let vi be the number of patients in state Si at time t = 0
for i = 1, . . . , k. However, instead of a fixed number of patients (beds) in the
system, new individuals enter the system, to achieve a total size of the system
T(t) at time t; here the total size is assumed to mean the total number of
patients in states S1, . . . ,Sk. The growth at time t is then given by:

G(t) = T(t)−T(t− 1) (4)

where G(t) may be zero i.e. the size of the hospital resource available to
patients is fixed, as in the previous section. This corresponds to a planned
growth where management decides to expand a particular provision. Typically
this growth will proceed for a fixed period of time and then decline to zero,
as the target is achieved.

As before (Fig. 1), we assume that patients are admitted from a waiting
list and our model essentially describes movements of beds between states,
rather than patients. All new patients are admitted to state S1, which is an
initial assessment state.

The overall p.g.f. (probability generating function) of the numbers in each
grade at time t is then given by:

G(Z, t) =

(
k∏

i=1

(1 + ViBtZ)vi

)
.

(
t∏

s=1

(1 + ViBt−sZ)G(s)

)
. (5)

In (4), the first term corresponds to the individuals νi who are in grade Si

at time t = 0, for i = 1, . . . , k. By time t these patients (beds) have rearranged
themselves according to a multinomial distribution with probability vector
ViBt, as before. The second term in (4) is the convolution of multinomial
terms, each representing movements of patients (beds) who are admitted at
time s, where there is a growth G(s), for s = 0, . . . , t.

The equivalent expression for costs is then:

H(Z, t) =

(
k∏

i=1

(1 + ViBtZc)vi

)
.

(
t∏

s=1

(1 + ViBt−sZc)G(s)

)
. (6)
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The mean cost at time t is therefore now given by:

C(t) =
k∑

i=1

viViBtc +
t∑

s=1

G(s)V1Bt−sc (7)

As t →∞, T (t) → T and G(t) → 0 we obtain:

lim
t→∞C(t) = C∞ =

∞∑
s=1

k∑
i=1

r0i

k∑
j=1

cjP̃ij(t− s)G(s)

=

(
k∑

i=1

νi +
∞∑

s=1

G(s)

)⎛⎝ k∑
j=1

cjπj

⎞
⎠

Where the first term is the total number of individuals in the system at
time ∞ and the second term is the unit cost in steady state.

Here T =
∞∑

s=1
G(s) and

∑
lim t→∞

G(t) = 0.

3.1 Example 2: A four State Model with Exponentially Declining
Growth

The four phase-type model has (Fig. 4) previously been fitted to data from
a 16 year dataset by [3], who used penalised likelihood to determine the op-
timal number of phases in each case. The phases were identified as acute,

Acute
1

Treatment
2

Rehabilitative
3

Long-stay
4

Death/Discharge
5

Hospital

Fig. 4. The four state model
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Fig. 5. The four state model

treatment, rehabilitative and long-stay (Fig. 4). From the phase-type maxi-
mum likelihood parameter estimates, we may determine transition probabili-
ties for the Markov model. The costs have been estimated, based on current
data for geriatric patients in the UK. These costs, which are indicative, are
based on relative weightings of 15:10:8:6 for Acute: Treatment: Rehabilitative:
Long stay.

The mean weekly numbers of patients in the hospital over time are pre-
sented in Fig. 5. Initially there are 100 acute male patients. We assume that
growth occurs according to the rate G(t) = exp(−0.1 ∗ t), leading to a total
of 199 patients in steady state. Based on an average daily cost of £150 in
acute care and the above ratios, the average cost per week in steady state
is £143,640. All results were obtained using MATLAB. We see that, as ex-
pected, all patient numbers (and related costs) rise steeply over the first few
years and then level off. The final patient numbers show the biggest group to
be in rehabilitative care, with quite a few acute care patients also. There is
also a significant number of patients (12.6%) in long-stay care in steady-state.

4 Data Issues

A key issue for adopting phase-type models as a vehicle for intelligent planning
and costing of such hospital systems, is the estimation of model parameters
from the data. In the context of the current chapter we must therefore learn
parameters for the phase-type model describing a patient’s length of stay in
hospital (the mi’s and di’s); in the case of the fixed growth model we also need
to obtain suitable values for the growth function G(t). Data on costings are
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also needed but may be difficult to obtain. Typically, hospital administrative
data are routinely collected but can lack the detail necessary for our purposes.
In particular data may be only be available as a “snapshot” (census data) of
patients who have already been in hospital for a known length of time, rather
than having longitudinal (cohort) data available.

Another issue is that patterns may be time heterogeneous, which means
that we cannot easily combine data relating to patients from different time
periods. A further aspect that we need to consider is whether data can be eas-
ily extracted from management databases. If new data collection is needed,
then fitting the models can become very time-consuming and costly. In addi-
tion such complex issues as seasonality, fluctuations in demand, and weekly
patterns need to be considered; typically this is achieved by analysing over
an appropriate period of time to smooth out short-term effects that are not
relevant to the identification of a cost-effective solution.

We have previously employed ideas from renewal theory to learn such
models from census data [9] where we estimate the phase-type parameters
using data on length of stay of all patients in a hospital department at a
particular time-point. Such data are length-biased so we need to take account
of this by modifying the likelihood terms accordingly and then employing
penalised maximum likelihood to learn the parameters. However, with health
services employing more powerful and complex databases, such issues of data
availability are becoming increasingly less important.

5 Decision Support System

The proposed decision support system is presented in Fig. 6. It will have the
following modules:

User Interface. This will work as an interface between the user and the
decision support system. The user will input his/her query in the natural
language and will be able to see the answer in natural language.

User
Interface

Query
filter

Hospital
Database

Markov
Model

Report
Generator

Learning
Module

Fig. 6. Block diagram of the proposed decision support system
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Query filter. This will convert the query in to the machine readable form
and will extract data to run the model and will also update/append the data-
base. according to the user input.

Hospital Database. It will contain the patient records in a database. We
can use any commercial DBMS package for storing patient records. For our
present system we are using the historical administrative database of the
Geriatric Department of a London hospital [9].

Markov model. This is the Markov model we discussed in this chapter,
which can be used to determine the number of patients and costs in each
phase of hospital care.

Report generator. Report generator module will generate the report ac-
cording to the answers from the Markov model module. And will convert it
in to the human readable form.

We also propose a learning module to continuously evaluate and update
the parameter values we used in the model to reflect the change in the data-
base. This decision support system will help healthcare managers and policy
makers in predicting the future resource requirements and therefore help in
various policy decisions to ensure availability and optimum utilization of the
healthcare resources at the same time minimizing the cost.

6 Conclusion

We have described discrete time Markov models that have k transient states
and one absorbing state. Arrivals (admissions) to the system occur from a
waiting list to replace discharges so that the total size of the system either
remains constant or grows according to a pre-determined (deterministic) plan.
For each of these scenarios we have attached rewards (costs) to each state at
each time point and found expressions for the p.g.f. and mean costs at any
time point t.

Such systems commonly occur where a number of individuals move
through a graded system. We particularly focus here on a hospital system
where patients move through a care system; here the states may be different
stages of treatment e.g. acute, rehabilitative, long-term stay. However, the
models we have been developed can also be used in other contexts, e.g. a hu-
man resource model where instead of patients we have employees and recruits
replace leavers, as described in [11]. Such models can be used to develop a
decision support system to assist planners who need to predict future costs
under various scenarios.
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Summary. Multi-phase models of patient flow offer a practical but scientifically
robust approach to the studying and understanding of the different streams of
patients cared for by health care units. In this chapter, we put forward a deci-
sion support system that is specifically designed to identify the different streams of
patient flow and to investigate the effects of the interaction between them by using
readily available administrative data. The richness of the data dictate the use of
data warehousing and On-Line Analytical Processing (OLAP) for data analysis and
pre-processing; the complex and stochastic nature of health care systems suggested
the use of discrete event simulation as the decision model. We demonstrate the ap-
plication of the decision support system by reporting on a case study based on data
of patients over 65 with a stroke related illness discharged by English hospitals over
a year.

1 Introduction

In this chapter we propose the incorporation of discrete event simulation mod-
elling and data warehousing techniques into a decision support system for
modelling the flow of patients through hospitals and health care systems.
The system can be easily applied to model different levels of health care op-
erations. The scalability of the individual modelling components make this
decision support system unique in its kind.

We focus on the analysis of patient length of stay (LoS) in hospital and
bed occupancy in the care for older patients. A recent beds enquiry in the
UK showed that two thirds of hospital beds are occupied by patients aged 65
and over [1]. This phenomenon is not only attributed to the higher admission
rate (289 per 1,000 population for the 65+ age group as opposed to 94 per
1,000 population for the 15–64 age group) but also to the almost twice as
long average LoS of this group of patients. Hence, we believe the provision of
tools to aid in the analysis of hospital LoS and bed occupancy is critical to
the management of these patients and to the allocation of health resources.
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(2008)
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We also demonstrate in this chapter the viability of the proposed OLAP-
enabled decision support system by applying it to real-life data. One case
study is reported based on data from the English Hospital Episode Statistics
database. The system is employed to support the identification of different
streams of patients flowing through NHS hospitals. With the aid of the tools
comprising the decision support system, the user not only can conduct exten-
sive explorative analysis in a very efficient and timely manner but can also
estimate the relevant parameters of the different streams of flow. Thereafter, it
is possible to estimate the effects that different capacity constraints will have
on the system and pre-test different scenarios that affect the flow of patients
through it. At this level, the decision support system is capable of supporting
the strategic decision making.

The rest of the chapter is organized as follows. In Sect. 2 we briefly intro-
duce a multi-phase approach for modelling patient flow. Section 3 discusses the
need for integrating data and decision modelling techniques, and illustrates
the information flow in the proposed decision support system. In Sect. 4 we
describe, discuss and evaluate the application of the proposed decision support
system to a nationwide stoke dataset. Section 5 summarises the contribution
of this chapter.

2 Measuring and Modelling the Flow of Patients

The inefficiencies of traditional methods in describing patient activity with
skewed LoS distributions is well documented in the literature [2]. Simple LoS
averages can offer indications but cannot accurately describe the process of
care in such hospital departments as geriatric or psychiatric [3]. The compli-
cating factor is the presence of patients with considerably longer LoS than
others, in many cases in the order of months or even years. Consequently de-
cisions on resource allocation and patient management that are based on such
measures are often suboptimal [4].

Alternative methodologies that take account of the multi-phase nature of
patient flow have been developed to overcome this problem [5]. McClean and
Millard [6] have modelled the LoS of geriatric patients by using a two-term
mixed exponential distribution. More generally, the observation that the LoS
can be described in terms of mixed exponential equations have lead to the
development of a flow model for modelling patient activity [7]. The different
streams of patient flow can be classified as short stay (usually measured in
days in the hospital care for older patients), medium stay (measured in weeks),
and long stay (measured in months or years). A three-term mixed exponential
model is of the form

N(s ≥ x) = Ae−Bx + Ce−Dx + Ee−Fx (1)
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where s is the occupancy time of a patient, x is the time in days, N(s ≥ x) is
the total number of current patients that have been in hospital for greater than
x days, and A, B, C, D, E, and F are constants, the parameters of the distri-
bution. A specially designed program, called BOMPS, has been developed to
enable the estimation of the parameters in equation (1) using the non-linear
least squares method [8]. The main advantage of the software is that it uses
readily available discharge data for estimating the input parameters.

Discrete event simulation models that have been developed based on the
multi-phase nature of patient flow, have further extended the capabilities of
the mathematical models by incorporating the stochastic nature of the sys-
tem under study and the cascading effect of bed blockage in measuring the
performance of alternative policies [9].

Patient LoS in hospital however, is not the only parameter to consider in
describing patient activity in hospital departments [10]. Patterns of admis-
sions and discharges and of overall occupancy play a major part in under-
standing the system. Weekly and seasonal variations are well reported and
account for major disruptions and hospital bed shortages [11]. For example,
a major seasonal variation in the pattern of admissions and discharges was
the main cause behind the well publicised winter bed crisis, a cyclical phe-
nomenon that used to appear in British hospitals, two or three weeks after
the Christmas period. The rise in admissions has often been proposed as a
possible explanation, however, analysis of data from a teaching hospital with
bed shortages suggested delays in discharging elderly patients as a possible
alternative explanation [12].

3 Integrating Data and Decision Modelling Techniques

Although LoS and bed occupancy analysis give useful insights, they also high-
light the problems arising from the lack of integration between the data and
decision modelling components of the decision support process [13]. Data
modelling typically involves either the identification of the relationships that
exist between data items, which leads to a relational data model, or the cat-
egorisation of the data items in dimensions and measures, which leads to a
multi-dimensional data model. Decision modelling generally involves the de-
velopment of some type of a model that is capable of representing the real
life system under consideration. It has been suggested that a proper integra-
tion of data analysis and model building in a health care setting is capable of
reducing the overall time required to perform a project analysis by a factor
of ten [14].

The importance of data modelling is often overlooked. An analytical model
should only be seen as a single activity in a chain of activities that use raw data
for informing decision making. The management information value chain [15]
illustrates all the activities by which information is acquired, transformed,
stored, disseminated and finally presented to the decision maker and how
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Fig. 1. The management information value chain in decision support, taken from [16]

each one of these activities increases the total value of information in an
organization, Fig. 1. An analytic model must be seen as a single link in this
multi-phase process that converts raw data into decisions.

The multi-dimensional data model that emerged in the past decade has
been successful in analysing large volumes of data for decision making pur-
poses [17]. Multi-dimensional databases view data as multi-dimensional data
cubes that are suited for data analysis. On-Line Analytical Processing (OLAP)
is a software technology that takes advantage of the data model by enabling
analysts, managers and executives to gain insight into data through fast, con-
sistent, interactive access to a wide variety of possible views of information
that has been transformed from raw data to reflect the real dimensionality
of the organisation as understood by the user [18]. Data are seen either as
facts with associated numerical measures or as textual dimensions that char-
acterise these facts. Dimensions are usually organised as hierarchies. Typical
OLAP operations include the aggregation and de-aggregation of data along a
dimension (roll-up and drill-down), the selection of specific parts of the cube
(slicing), the reorientation of the dimensions in the multi-dimensional view of
data on the screen (pivoting) and the displaying of values from one dimension
within another one (nesting) [19]. OLAP is essentially a tool for browsing
data stored in the data warehouse and it does not necessarily imply that the
underlying physical model of the database is multi-dimensional.

Figure 2 illustrates the flow and transformations of information in the
proposed framework of decision support. The incoming raw data may come
from nationwide databases such as UK’s Hospital Episode Statistics (HES),
from hospital databases, and other supplementary data. Raw data are pre-
processed, a process which involves loading, cleaning and adapting the data
to the logical schema required by the cube building stage. After the initial
transformation that can take place in an RDBMS or a spreadsheet application,
raw data have acquired some clinical and business context.

The next stage involves the creation of the data model and data cubes
that will facilitate the OLAP functions and it is staged on a specialised OLAP
server. Data cubes are the basis for the next stage, OLAP browsing. A wide
variety of client tools are available to the developers and end users, including
pivot tables and graphs (incorporated in spreadsheets and internet browsers),
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Fig. 2. Information flow in a patient activity decision support system

dedicated OLAP browsers, and query-based applications for more complex
multi-dimensional data retrieval. The output of this stage is either estima-
tions of the input parameters for the analytical models of the next stage, or
information that is directed to the end users of the system.

The model building stage involves the development, instantiation and ex-
ecution of some analytical or statistical models. For example, discrete event
simulation or flow models that were briefly described in Sect. 2. The output of
such models can then be further analysed and subjected to sensitivity analysis
or provide the basis for what-if scenarios. The output of this stage provides
information for intelligent decision making.

4 Application

Here we demonstrate the use of the decision support system described in the
previous section on a large dataset. An additional aim is to illustrate the
presence of different streams of flow in a health care system and as a result,
the inadequacy of simple averages to represent LoS data. To this extent, we
demonstrate how the alternative methodologies briefly described in Sect. 2
can be applied.

Stroke illness is of particular interest as its characteristics lead to a diverse
hospital population in terms of clinical management, which is reflected in
the LoS distribution. The neurological deficit that occurs after a stroke may
be a transient phenomenon or may result in varying degrees of permanent
disability. In the former cases clinical care is focused on prevention; in the
latter and especially the more severe cases, the focus is on supportive after-
care and multi-disciplinary rehabilitation [20]. These clinical observations pose
some interesting challenges in modelling stroke related data. Moreover, the
incidence/prevalence of the illness is high – stroke is the third most common
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cause of death in most developed countries [21]. As a result a large proportion
of the NHS budget is allocated to stroke care and thus, it is important to
determine and scrutinise the patterns of resource usage.

The data set used as a running example comes from the English Hospital
Episode Statistics (HES) database and concerns finished consultant episodes
of stroke patients, aged 65 and over, admitted by all English hospitals be-
tween April 1st, 1994 and March 31st, 1995 (148, 251 episodes). Following a
HES recommendation, only records referring to the first episode of care were
analysed (122, 965 spells). The LoS and occupancy statistics refer to the 105,
765 spells that had a discharge date, and therefore do not include the 17,200
patients who were still in the hospitals on 31st March 1995. A spell qualified
as stroke if it contained a stroke related diagnosis code anywhere in the diag-
nostic chain. Stroke related diagnoses are between codes 430 and 438 in the
International Classification of Diseases, Injuries and Causes of Death-Revision
9, ICD-9 [World Health Organisation 22]. No information that identified in-
dividual patients was supplied.

4.1 Stroke Data Mart Design

In this section, we outline some of the data models that underpin the OLAP
environment using the formalisms defined by Thomas and Datta [23] and
employed previously in modelling health data [24, 25]. Under the Thomas
and Datta formalism, a cube is defined a 5-tuple <C,A, f, d,O> where C
is a set of characteristics, A is a set of attributes, f is a set of one-to-one
mappings between a set of attributes to each characteristic, d is a boolean-
valued function that partitions C into dimensions (D) and measures (M), and
O is a set of partial orders [23].

The star schema for the transaction-based analysis consists of a fact table
(LOS) and thirteen dimension tables, Fig. 3. The unique identifier of the spell
(Spell ID) is the primary key of the fact table while the primary key of each
dimension is included in the fact table as a foreign key. The dimensions are

LOS
spell_id
…
los

Adm. Method

Sex

Destination

Pat. Class / on

Diagnosis

Stroke Diag.

Adm. Date

Adm. Source

Group LoS

Age

Specialty

Health Auth.

Dis. Date

Fig. 3. LOS star schema, Stroke dataset
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Admission Method, Admission Source, Age, Patient Classification, Discharge
Destination, Group LoS, Finished Consultant Episode Specialty, Patient Sex,
Admission Date, Discharge Date, Primary Diagnosis, Stroke Diagnosis, and
Health Authority of Treatment.

A data cube, LOS, based on the above dimensional model is defined as
follows:

C={admission method, admission source, age, patient class,
destination, group los, specialty, sex, admission date,
discharge date, diagnosis, stroke diagnosis, health authority,
spell los};

d(admission method)=1, d(admission source)=1, d(age)=1,
d(patient class)=1, d(destination)=1, d(group los)=1,
d(specialty)=1, d(sex)=1, d(admission date)=1,
d(discharge date)=1, d(diagnosis)=1, d(stroke diagnosis)=1,
d(health authority)=1, and d(los}=0;

D={adm method, adm method group, adm source, adm source group,
patient class, destination, destination category, discharged,
group los week, group los, specialty, specialty group, sex,
adm day, adm week, adm month, adm quarter, adm year, dis day,
dis week, dis month, dis quarter, dis year, diagnosis,
diagnosis group, stroke diagnosis, stroke diagnosis group,
district health authority, regional health authority}

M={spell id, los};
f(admission method}={adm method, adm method group},
f(admission source}={adm source, adm source group},
f(age}={age, age group, age lrg group},
f(patient class}={patient class},
f(destination)={destination, discharged, destination category},
f(group los)={group los, group los week, los},
f(specialty}={specialty, specialty group},
f(sex}={sex},
f(admission date)={adm day, adm week, adm month, adm quarter,
adm year},
f(discharge date)={dis day, dis week, dis month, dis quarter,
dis year},
f(diagnosis)={diagnosis, diagnosis category},
f(stroke diagnosis)={stroke diagnosis, stroke diagnosis category},
f(health authority)={district health authority,
regional health authority},
f(spell los)={spell id, los};
Oadmission method={〈adm method, adm category〉},
Oadmission source={〈adm source, adm source category〉},
Oage={〈age, age group〉, 〈age group, age lrg group〉},
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Opatient class={}
Odestination={〈destination, destination category〉,
〈destination category, discharged〉},
Ogroup los={〈los, group los week〉, 〈group los week, group los〉} and,
Ospecialty={〈specialty, specialty group〉},
Osex={}
Oadmission date={〈adm day, adm month〉, 〈adm month, adm quarter〉,
〈adm quarter, adm year〉, 〈adm week, adm year〉},
Odischarge date={〈dis day, dis month〉, 〈dis month, dis quarter〉,
〈dis quarter, dis year〉, 〈dis week, dis year〉},
Odiagnosis={〈diagnosis, diagnosis group〉},
Ostroke diagnosis={〈stroke diagnosis, stroke diagnosis group〉},
Ohealth authority={〈district health authority,
regional health authority〉} and,
Ospell los={}

A very similar dimensional schema and data cube describe the periodic
snapshot data model for bed occupancy analysis. Apart from the two date
dimensions (admission and discharge dates) that are substituted by a single
table (bed occupancy date), the remaining dimensional tables remain the
same. The fact table then, OCC, becomes

OCC={day, adm method, adm source, age, patient class, destination,

group los, specialty, sex, diagnosis, stroke diagnosis,

district health authority, admissions, discharges}.
The snapshot-based, data cube model designed for bed occupancy analy-

sis is subjected to similar minor changes. Apart from merging the two date
dimensional characteristics into one, the metrics of the data cube OCC are

M={admissions, discharges}.

The two star schemas and the data cube model were implemented on MS
SQL Server 2000 Analysis Services. The OLAP queries were written in the
MDX query language and the front-end OLAP environment was developed in
MS Excel. The explorative analysis was performed using the OLAP-enabled
environment including the graphs in this section, which were produced by the
OLAP client.

4.2 Stroke Descriptive Statistics and Exploratory Analysis

The basic descriptive statistics of the patient LoS data are summarised in
Table 1. The patient LoS distribution exhibits a standard deviation of 52.045
days over a mean of 14.29 days giving a coefficient of variation of 363%,
thus indicating a very high variability in the data. The positive difference
between the mean (14.29 days) and the median (7 days) LoS suggests that
the data is skewed with a long tail in the distribution to the right. The large
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Table 1. Descriptive statistics of LoS data, Stroke dataset

Number of records 105,765
Mean (days) 14.290
Median (days) 7
Std. deviation (days) 52.045
Skewness (days) 42.198
Kurtosis (days) 2,609.211
Min-Max (days) 0–4906
25th percentile (days) 3
75th percentile (days) 15
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Fig. 4. Frequency distribution of LoS, Stroke dataset

positive value of skewness confirms the long right tail in the graph of the
distribution. The interquartile range (IQR, the range between the 25th and
75th percentiles) is 12 days.

The frequency distribution of LoS (Fig. 4) shows a highly skewed distri-
bution where the data initially peaks in the first week of stay in hospital
indicating that the majority of patients leave hospital within the first week.
There is then a very long gradual tail to the right of the distribution where
there is a steady decrease in the number of patients who leave hospital with
longer stays. The long tail is caused by a very small number of patients stay-
ing in hospital for a considerable amount of time – some of which occupy a
bed for over a year.

The importance of taking into account the longer stay patients becomes
apparent when bed occupancy is stratified, Fig. 5. This contour plot shows
the daily occupancy stratified by groups of LoS. The groups refer to patients
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Table 2. Spells and bed days by group LoS, Stroke dataset

Group LoS (days) Spells (%) Bed days (%)

0 12.08 0
01–07 37.99 10.55
08–21 34.16 30.86
22–42 10.31 21.30
43–98 4.48 18.99
99–364 0.84 8.55
365+ 0.13 9.75

that stayed in hospital for 0 days, less than a week, 1–3 weeks, 4–6 weeks,
7–13 weeks, and 14+ weeks. The choice of the LoS interval for each group
is based on clinical judgement. The decline towards the end of the graph in
the longer stay groups is because we have excluded records of patient spells
without a discharge date.

Although almost half of the patients are discharged within the first week,
the majority of the beds (almost 90%) are constantly occupied by patients
who stay for more than a week, Table 2. Similarly, the 1% of patients who
stay for 99 days or more is responsible for almost 18% of the total bed days.
Clearly, there is scope and need for a modelling technique that takes into
account the above observations in the LoS distribution.

The power of the OLAP environment becomes apparent when more com-
plex explorative analysis is required. For instance, the effect of discharge des-
tination on LoS can be evaluated. In Fig. 6 the columns represent the average
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Authority, Stroke dataset

LoS per discharge destination. Clearly, there is a substantial difference in the
average LoS of patients discharged to their usual residence and patients who
are discharged to other destinations such as local health authority (LHA) res-
idential care, non-NHS hospitals, and nursing and residential homes. These
results are confirmed by an ANOVA test at the 95% level (p-value < 0.001).

Further analysis reveals that if outcome is simply measured by the aver-
age LoS, variations in the delivery of health care remain hidden. In Fig. 7,
the number of spells is plotted on the primary y-axis (left-hand side of the
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plot), while the average and standard deviation of LoS is plotted on the sec-
ondary y-axis (right-hand side). Although the average LoS does not seem to
vary considerably between the different regional health authorities, there is a
marked difference in the variance which cannot be explained by the number
of patients being treated in the regions.

4.3 Compartmental Modelling

The analysis described above is valuable in exploring and understanding var-
ious issues pertaining to the operation of the system. However, the ability to
model the system not only furthers our understanding but also allows us
to plan for it by testing the likely outcome of different operational scenar-
ios. To enhance the findings of the analysis, in this section we describe the
application of compartmental and simulation modelling.

First, the mixed-exponential model was fitted to the dataset. The esti-
mated parameters after fitting the two-term and three-term exponential model
to a virtual midnight census on Wednesday, 6th April 1994 using the e-fit mod-
ule of BOMPS are summarised in Table 3. There were 4,157 occupied beds
on that particular day. A bed census is required since the mixed-exponential
model can only be applied to one-day data. A Wednesday is chosen to avoid
the fluctuations that usually occur at the beginning and end of the week.

The choice of the number of terms in the model is a matter of professional
judgement as much as of statistics. The general rule is to choose the simplest
model that gives a good fit without “over fitting” the data. In this case, the
goodness of fit in both models, as expressed by R2 , is very good (0.99642 and
0.99925 respectively). Further experimentation with survival analysis tech-
niques and with fitting Coxian phase-type distributions suggest that the data
is best represented by a model that contains three streams of flow of pa-
tients [2].

The parameters of the three-compartment model were calculated by the
estimations for the three-term exponential model, Fig. 8. An admission rate
of 286.2 patients per day (real admission rate per day was 289.8) is estimated
on the day of the census. According to the model, these patients enter the

Table 3. Estimated parameters of 2- and 3-term mixed exponential models for
census date 6th April 1994, Stroke dataset

2-term exp. model 3-term exp. model

A 3580.728 2694.280
B 0.06902 0.09741
C 473.010 1314.213
D 0.00612 0.02766
E 0 168.415
F 0 0.00153
R2 0.99642 0.99925
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10.8 days 
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Fig. 8. Three-compartment model of patient flow, Stroke dataset

Table 4. BOMPS estimates for different discharge destinations, Stroke dataset

First
compartment

Second
compartment

Third
compartment

Discharge
destination

# Pat.
(%)

LoS
(days)

Pat. (%) LoS
(days)

Pat. (%) LoS
(days)

Usual residence 77, 401 97.1 10.3 2.9 50.6 – –
LHA residential
care

820 93.8 27.8 6.2 97.6 – –

Non-NHS
Hosp-NH-RH

3, 039 95.8 30.4 4.2 124.2 – –

Death 14, 116 39.7 3.6 57.3 17.2 3.0 180.1

LHA Local Health Authority, NH Nursing Home, RH Residential Home

short-stay compartment where they stay for 10.8 days on exponential aver-
age. Almost 9 out of 10 patients are discharged, the rest enter the medium-stay
compartment where they stay for a further 36.7 days on exponential average.
The majority of them are discharged, only 1 in 100 becomes a long-stay pa-
tient. The expected stay in long-stay is 653 days. The estimated number of
patients in each compartment is 3,083 in short-stay, 937 in medium-stay, and
156 in long-stay. The modelled total number of patients in the system (4,176)
compares favourably with the actual number of patients on the day of the
census (4,157) a mere deviation of 0.46%.

Further flow rate analysis was conducted to investigate the observed dif-
ferences in the average LoS for patients with different discharge destinations
(recall Fig. 7). Four groups were further analysed: Usual Residence, LHA Res-
idential Care, Non-NHS Hospitals–Nursing Homes–Residential Homes, and
Death. Table 4 shows that 2-compartment models best describe all the cate-
gories of patients apart from those who died while in hospital. In this category,
4 out of 10 patients have an expected LoS of 3.6 days, while 6 out of 10 are
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expected to stay in the hospital for roughly 2 months (57.3 days). A small pro-
portion (3%) stay in the hospital for half a year (180.1 days). Such a pattern of
patient flow is to be expected because of the clinical progression of the disease.

In all other destinations, two streams of flow are identified. Patients who
are discharged to their usual residence have the largest short-stay stream
(97.1%) and a shorter LoS (10.3 days) compared to patients discharged to
either LHA residential care or nursing and residential homes. These patients
form a more distinct second compartment while for those patients in the
short-stay stream, a longer LoS is to be expected. These delays cannot be
explained just by medical reasons and it can be safely deduced that these
patients occupy beds for longer periods while waiting for a suitable place to
be found i.e. they may be regarded as delayed discharges.

4.4 Simulation Modelling

The compartmental model described above provides the input parameters for
the discrete event simulation models [9, 12]. We first experimented with a
model without capacity constraints to investigates the general behaviour of
the simulations. This includes estimating the duration required for the model
to reach stable state. The OLAP-enabled environment was used to facilitate
the application of the Welch method to estimating the warm-up period of
the simulation [26]. A warm-up period, l, of 2000 days was estimated based
on 10 runs (k = 10), each one starting with a different random seed, Fig. 9.
A 150-day moving average was required to smooth out the high frequency
oscillation in the time series of the total number of patients in the system.
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Fig. 9. Total number of patients in the system, 150-day moving average, uncon-
strained simulation model
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The unconstrained model is also used for validation purposes. Specifically,
we statistically confirmed that the point estimations for the number of patients
in each compartment, after the warm-up period has been discarded, are equiv-
alent to the estimations given by the 3-compartment model (Fig. 8). Table 5
illustrates, for each compartment, the unbiased estimators for µ and sample
variance, their 95% confidence intervals (CI), and the estimates from BOMPS.
One-sample t-tests at 95% CI confirm that there is no significant difference
between the point estimates of simulation and those given by the three com-
partment model (p-values of 0.793, 0.761, and 0.119 respectively).

Having established the capacity constraints for each of the compartments,
we can now introduce queues between them. The queues are used to measure
blockage between the short and medium, and the medium and long-stay com-
partments. Different capacity constraints can be set for each compartment for
conducting what-if analyses. Acute services – roughly matched with the short-
stay compartment – require more spare capacity than rehabilitation and long
term care services which are roughly matched with the medium and long-stay
compartments. A smooth flow of patients, as expressed by low queuing and re-
fused admission rate, is achieved only when the model operates with adequate
level of emptiness in every compartment, Table 6. There is a marked increase
in all the performance measures when the last two compartments operate at
95% levels, while the short-stay operates at 85% occupancy. On the contrary,
a smooth level of flow is observed even when all the compartments operate at
90% levels of occupancy.

Table 5. Unconstrained model, estimates for steady-state daily occupancy (k = 10,
l = 2,000, n = 5,000)

Short-stay Medium-stay Long-stay

Mean 3,083.83 937.63 153.71
Standard Deviation 4.56 3.83 4.83
95%CI− 3,080.56 934.89 150.25
95%CI+ 3,087.09 940.38 157.16
Flow model estimates 3,083.00 937.00 156.00

Table 6. Experimenting with different levels of occupancy (mean [95% CI])

Time spent in queue (days)

Occupancy (total #
beds) (%)

Refused
admission (%)

Acute to
rehab

Rehab to
long-stay

85 (4,913) 0 (0) 0 (0) 0.3 (0–1)
88 (4,746) 0 (0) 0 (0) 2 (0–4.5)
90 (4,640) 0.1 (0–0.2) 0 (0–0.1) 6.6 (0–17.6)
85–95–95 (4,777) 6.5 (0–17.5) 4.7 (1.7–7.6) 64.3 (29.5–99)
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5 Discussion and conclusion

In this chapter we demonstrate the application of mixed-exponential, com-
partmental and simulation modelling techniques in modelling LoS data taken
from a nationwide stroke dataset. In a separate analysis reported elsewhere [2],
survival analysis was conducted and phase-type distributions were fitted to
the same data. The results of these statistical techniques reached the same
conclusion, that LoS data in the stroke dataset is best represented by a model
that contains three streams of patient flow.

In addition, the applicability of the OLAP environment was demonstrated
in terms of analysing LoS data along different dimensions. Key features of the
OLAP-enabled environment that arose during this practical case are:

• The use of the first hierarchical level of the “Destination” dimension to
include (or exclude) from the queries patients that are still in the system

• The use of the “Group LoS” dimension for the symmetrical treatment of
LoS (as a measure and a dimension). This particular dimension allows for
the generation of graphs of the distribution of LoS and the strata graphs
(Figs. 4 and 5) that have proved to give particular useful insights in bed
usage patterns

• The ability to generate “slices” of different daily bed censuses at the correct
granularity that can then be fed to BOMPS for estimating bed usage
statistics

• The implementation of Welch’s method for estimating the initial transient
of the steady-state simulation of patient flow
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Summary. In this chapter we present the IGUANA (real time Individuation of
Global Unsafe Anomalies and Alarm activation) framework which performs real-
time analysis of clinical data to assess the instantaneous risk of a patient and identify
dangerous situations. The proposed approach consists of two phases. As a first step,
historical data is analyzed to build a model of both normal and unsafe situations,
which can be tailored to specific behaviors of a given patient clinical situation. The
model exploits a risk function to characterize the risk level of a patient by analyzing
his/her vital signs. Then, an online classification phase is performed. A risk label
is assigned to each measure by applying the most suitable model and an alarm is
triggered for dangerous situations. To allow ubiquitous analysis, this step has been
developed to run on mobile devices and its performance has been evaluated on both
smart phone and personal computer. Experimental results, performed on 64 records
of patients affected by different diseases, show the adaptability and the efficiency of
the proposed approach.

1 Introduction

Since medical applications of intelligent systems are becoming pervasive, sen-
sor technologies may be exploited for patient monitoring to reduce hospital-
ization time and domicile assistance. Companies are developing non-invasive
medical sensors to collect different physiological signals and create a body
sensor network to monitor several health parameters (e.g., temperature, heart
rate, blood pressure, oxygen saturation, serum glucose) to provide a compre-
hensive view of the patient’s condition. An important issue in this context
is the real-time analysis of physiological signals to characterize the patient
condition and immediately identify dangerous situations.

The general architecture of homecare systems (see, e.g., [1, 2]) is usually
composed by three subsystems: the body sensor network, the wireless local
area network and the GSM network. In this scenario each individual wears
a set of sensors integrated into non-invasive objects that reveal physiological
D. Apiletti et al.: Real-Time Individuation of Global Unsafe Anomalies and Alarm Activation,

Studies in Computational Intelligence (SCI) 109, 219–236 (2008)
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signals. These sensors are connected to the user’s mobile device (e.g., smart
phone, PDA) through a short range communication link (e.g., Bluetooth),
in charge of transmitting recorded signals. The set of wearable sensors and
the mobile device constitute the body sensor network. Possibly, the second
subsystem allows the communication between the user’s mobile device and
the elaboration center by means of an infrastructure node (e.g., access point).
Communication with the elaboration center may occur when the patient has
to transfer recorded data to the system for further off-line analysis or to
backup/gather historical data. Alternatively, a data transfer may occur from
the elaboration center to the mobile device to send extra knowledge to im-
prove the analysis. Finally, by means of the GSM network an alert message
is immediately sent to the closest medical centre to request prompt medical
intervention when a risk situation is detected.

The core of the homecare systems is the mobile device which records phys-
iological values from wearable sensors, transmits vital signs to the elaboration
center, locally elaborates/analyzes them to detect dangerous situations, and
sends an alert message to request prompt medical intervention. The mobile
device is also a critical point of the architecture. Since mobile devices work
with different constraints (e.g., power consumption, memory, battery), the
analysis of physiological signals performed on such devices requires optimized
power consumption and short processing response time which are important
research topics in different computer science areas.

Many efforts have been devoted to improve the hardware and the con-
nectivity among devices (see, e.g., [1, 3]) to reduce communication cost and
improve device lifetime. Less attention has been devoted to the description of
analysis techniques to assess the current risk level of a patient. However, the
fundamental and most difficult task is the definition of efficient algorithms
that automatically detect unsafe situations in real-time.

We propose the IGUANA (real time Individuation of Global Unsafe Anom-
alies and Alarm activation) framework which performs the real-time analysis
of physiological signals to continuously monitor the risk level of a patient and
detect unsafe situations. Our approach is based on data mining techniques
to characterize and immediately recognize risk situations from data streams
of physiological signals gathered by means of body sensors. We based our
risk evaluation on a function that combines different components. Each com-
ponent models a different type of deviation from the normal behavior. The
IGUANA framework performs an off-line analysis of historical clinical data
to build a model of both normal and unsafe situations by means of clus-
tering techniques. This model can be tailored to specific behaviors peculiar
to the clinical situation of a given patient (or patient group). The model is,
then, exploited to classify real-time physiological measurements with a risk
level and when a dangerous situation is detected an immediate intervention is
triggered. To allow ubiquitous analysis, the classification algorithm has been
developed to run on mobile devices (e.g., smart phone) and allows optimized
power consumption and short processing response time.
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We validated IGUANA with 64 patient records from the MIMIC-numerics
database (Multi-parameter Intelligent Monitoring for Intensive Care) [4]. We
analyzed four physiological signals (i.e., heart rate, systolic arterial blood pres-
sure, diastolic arterial blood pressure, and peripheral blood oxygen saturation)
which are representative of a patient’s health conditions. MIMIC recordings
last around 44–72 h. The experiments, performed both on smart phone and
on personal computer, highlight the adaptability and the efficiency of the
proposed approach.

2 The IGUANA Framework

The IGUANA framework performs real-time analysis for physiological risk
assessment. To this aim, it evaluates personal health conditions by analyz-
ing different clinical signals to identify anomalies (i.e., infrequent situations)
and activate alarms in risk situations. Since conditions depend on the spe-
cific disease or patient profile, we first perform a training phase in which the
framework automatically learns the common and uncommon behaviors by
analyzing historical data. Then, an on-line classification phase evaluates the
instantaneous risk level of the monitored patient in real-time. While the train-
ing phase is performed on a personal computer, the classification step is run
on a mobile device (e.g., smart phone).

Figure 1 shows the building blocks of the IGUANA framework. The main
blocks, model building and risk evaluation, are both preceded by a preprocess-
ing phase. Preprocessing is necessary to perform data specific elaborations
and to handle unacceptable physiological signal values, possibly due to sensor
malfunctions.

During the training phase, given unlabeled historical clinical data, a model
of safe and unsafe situations is created by means of data mining techniques.
The model is tailored to specific diseases or patient profiles. Hence, different
models of patients and diseases can be created. The most suitable model for

Classification

Training

Historical
data

Model

Real time data

Preprocessing

Risk labelled data

Model
building

Preprocessing Risk
evaluation

Fig. 1. Building blocks of the IGUANA framework
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the current monitored patient is exploited for real-time risk evaluation. Since
patient conditions depend on the contributions of several physiological signals
(i.e., heart rate, blood pressure, oxygen saturation), we devise a global risk
function to evaluate each time the risk indicator for the patient. The pro-
posed risk function combines different components. Each component models
a different type of deviation from the standard behavior. For example, the
difference from the moving average value highlights a long term trend and the
difference from the previous measure detects quick changes. Moreover, stan-
dard condition for patients may be represented by a normality band, whose
upper and lower bounds are denoted as normality thresholds. Outside these
thresholds, the risk of a patient additionally increases. Higher danger levels
are denoted by a higher risk value. During the on-line classification phase,
IGUANA processes real time streams of measurements colleted by sensors.
For each measurement, the risk value is computed by means of the proposed
risk function to evaluate the current patient condition. If a dangerous situa-
tion is detected an alarm (e.g., phone call, SMS) can be sent to the closest
medical center to request prompt medical intervention.

2.1 Data Preprocessing

Both the model creation and the classification phases are preceded by a
preprocessing phase, which aims at smoothing the effect of possibly unreli-
able measures performed by sensors. Preprocessing entails the following steps
(1) outlier detection and removal, (2) null values (NA) handling, and (3)
resampling.

Outlier detection and removal. Faulty sensors may provide unacceptable
measures for the considered physiological signals. These include negative and
extremely high values that cannot be reached in a living human body. The
medical literature provides a validity range for each signal, whose extremes are
defined NA-thresholds. Values outside such thresholds are considered outliers
and substituted by null values (NA).

Null values handling. The previous step, in particular cases, may yield
frequently NA-interrupted sequences of measures. During the model creation
phase, a long continuous sequence of not null values is needed. Hence, before
creating the model, isolated outliers (i.e., outliers preceded and followed by
acceptable values) are substituted by the average of the previous and following
measures. Finally, the longest subsequence without NA values is selected. This
preprocessing step is not performed before the classification phase, which is
applied on a stream of data incoming from sensors in real-time.

Resampling. The purpose of this step is to allow the management of the
heterogeneous data sampling frequencies at which different sensors may pro-
vide their measurements. By means of a sliding window (whose size is user
defined), each measurement is substituted by its average in the window. Next,
to keep physiological measures synchronized, an appropriate sampling of each
signal is performed.
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2.2 Risk Function

The idea of quantifying the health status of a patient by means of his/her
physiological signals is based on the comparison between current conditions
and the common behavior derived by the analysis of previously collected data.
We define as dangerous a situation in which the patient exhibits a deviation
from a standard behavior described by the model. The model can be tailored
to the different clinical conditions of a patient. We base our risk evaluation
on a function that combines different components. Each component assesses
a kind of deviation from the normal clinical behavior. The same risk func-
tion is applied to all physiological signals. However, different weights may be
assigned for each signal, according to its importance in the global clinical con-
dition evaluation and its specific physiological characteristics. The risk of each
measure depends on the following components, which are depicted in Fig. 2.

• Offset. It is the difference between the current measurement and the mov-
ing average value. Since the moving average is the mean value of the
measure in a given time window, the offset shows long term trends re-
lated to the current situation of a given patient.

• Slope. It is the difference between the current and previous measures. Its
purpose is to detect quick changes. Hence, it shows short term trends.

• Dist. It is the difference between the current value and the closest of two
thresholds, named “normality thresholds”. Normality thresholds define a
range outside which the patient risk increases because of excessively high
(or low) values. Their default values are estimated as the maximum and
minimum values of the moving average computed on the data analyzed
during the model building phase. However, some patients may have slightly
higher (or lower) values, due to particular diseases or special treatments.
Hence, such thresholds should be adapted by the doctor to the specific
needs of the patient.

The above risk components are combined to compute a risk value by means
of the following risk function.

Frisk = |wo ·Offset + ws · Slope|+ wr ·
√

Offset2 + Slope2 + wd ·Dist

Fig. 2. Risk components
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Fig. 3. Plot of the first term of the risk function

where wo, ws, and wd are weight factors over the different risk components.
We now analyze the contribution of each term of the risk function. The term
|wo ·Offset + ws · Slope| is plotted in slope-offset coordinates in Fig. 3.

A higher risk is associated with the points lying in the first and third
quadrant because the current value of the considered signal is far from its
moving average and the current trend shows a further increase of its distance.
Points in the second and fourth quadrant correspond to a lower risk value,
because the signal, even if far from its moving average, shows a stabilizing
trend, because its distance is decreasing. Points with the same risk value are
represented on straight lines (see Fig. 3) whose slope depends on weights wo

and ws. The first term is not sufficient to properly estimate the risk value.
According to this term only, a point in the axes origin (having null slope and
null offset, i.e. a measure equal to the previous one) has the same risk as a point
with high opposite slope and offset values, which describes a situation where
the measure is really far from the average but quickly returning to normality.
The second term in (1) (i.e.,

√
Offset2 + Slope2) takes into account this

effect by considering the distance of a point in slope-offset coordinates from the
origin. Finally, the dist contribution is added as third term. It increases the risk
associated with measures outside the normality thresholds range. The weights
ws, wo, and wd are parametric functions of slope, offset, and dist respectively.
The coefficient wr is a function of wo and ws. This approach allows a wide
degree of flexibility in the risk evaluation (e.g., positive and negative offset
values can be easily associated with different weights).

2.3 Model Building

In the model building phase we analyzed unlabelled clinical data to identify
normal and unsafe situations. The most infrequent situations are considered
as representative of risky situations and are exploited to model dangerous
states, while common behaviors yield a model of standard (normal) states.
After turning every signal point into its corresponding risk components (offset,
slope and dist), model building is performed in three steps, shown in Fig. 4
and described below.
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2.4 Measure Clustering

Clustering is separately applied to the offset, slope and dist measures, to
partition them in (monodimensional) clusters, characterized by homogeneous
values. IGUANA is currently based on a hierarchical clustering technique, but
the generality of our framework allows us to exploit any suitable clustering
algorithm. Clustering algorithm selection issues are discussed in the exper-
imental result section. At the end of this phase, for each considered sensor
stream, a collection of classes for offset, slope and dist values is available,
each characterized by upper and lower bounds.

2.5 Measure Risk Computation

The risk associated with each physiological signal (or measure) is computed
by applying the risk function to the offset, slope and dist risk levels. Measure
risk is divided into a finite number of values by means of a discretization step.

A graphical representation of the output of this step for the ABPdias
(diastolic arterial blood pressure) signal is plotted in a risk diagram shown in
Fig. 5. In the risk diagram points are characterized by their risk level, rep-
resented by a different shape (in ascending risk order: Crosshaped, x-shaped,
and rhombus) and color (in ascending risk order: violet, red, orange). The
x-axis displays the sample sequence number. Sample period is 15 s, unless dif-
ferently specified. The two horizontal lines show the absolute thresholds for
the signal (i.e., the maximum and minimum values allowed for any patient
as a human being). Among the analyzed physiological signals, we selected
ABPdias for its representative results. Hence, risk diagrams in this chapter
are based on this signal and can be easily compared.
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Fig. 5. ABPdias signal risk diagram

2.6 Global Risk Computation

The clinical situation of a patient depends on every physiological signal at the
same instant. Since we focused our analysis on identifying unsafe anomalies
which can lead to vital threat, even a single high risk measure is enough to
show an unsafe trend. For this reason, the global risk associated with the
clinical situation of the patient at a given instant is defined as the highest risk
level among those assigned to every physiological signal at the same instant.

2.7 Classification

Real time streams of measures incoming from different sensors are initially
processed separately, but the same operations are applied to all of them and
at the end the results are combined into a unique value indicating the risk
factor of the current clinical situation. Before starting the analysis, the value
of each incoming measure is compared with user-defined absolute thresholds
to determine whether it is outside a given range. If so, it is directly assigned
the highest risk level. Examples of user defined thresholds for several vital
signals are reported in Table 1. Next, the offset, slope and dist components
are computed for the incoming measure. The needed information are (a) the
previous measure, (b) the previous moving average value, and (c) the normal-
ity threshold values. A risk level is assigned to each component, by comparing
the current values with the predefined classes stored in the model itself. The
risk associated with each physiological signal (or measure) is computed by



www.manaraa.com

Global Unsafe Anomalies and Alarm Activation 227

Table 1. Absolute thresholds

Signal Min Max Units

HR 40 150 Beats per minute
ABPsys 80 220 mmHg
ABPdias 40 120 mmHg
SpO2 90 100 %

applying the risk function to the offset, slope and dist risk levels. In this
step, the user-defined weight parameters are exploited. Next, the maximum
risk among all current measures is assigned as global risk level. If the obtained
global risk level is above a user-defined threshold, an alarm may be triggered.1

3 Experimental Results

We validated our approach by means of several experiments addressing both
the effect of varying different parameters of the framework (i.e., clustering
algorithm selection, sliding window width, sampling frequency, risk function
weights), and the performance of its current implementation.

We have identified a “standard” configuration for all parameters (i.e., clus-
tering algorithm is hierarchical algorithm with average linkage method, sliding
window size is 2 min, sampling frequency is 5 s, risk function weights are set
to 1). All experiments have been performed by varying the value of a single pa-
rameter and preserving the standard configuration for all the other parameters.

3.1 Datasets

We validated the IGUANA framework with sensor measures publicly avail-
able on the Internet and collected by PhysioBank, the PhysioNet archive
of physiological signals (www.physionet.org/physiobank), maintained by the
Harvard-MIT Division of Health Sciences and Technology.

We analyzed 64 patient records from the MIMIC-numerics database
(Multi-parameter Intelligent Monitoring for Intensive Care) [4], for whom
the medical information we needed had been recorded. The patients were
more than 60 years old. MIMIC-numerics is a section of the larger MIMIC
database whose data is represented in the numeric format displayed in the
digital instrumentation used for patient monitoring in hospitals. Since the
MIMIC database collects data from bed-side ICU (Intensive Care Unit)
instrumentation, the clinical situations of the patients we analyzed were
extremely serious, allowing us to the test our approach in such utmost con-
ditions. For our purpose, in the MIMIC-numerics database we chose four
physiological signals considered significant of a patient’s health conditions
1 Actions associated with such alarms are outside the scope of this paper.
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(a) heart rate (HR) [beats per minute], (b) systolic arterial blood pressure
(ABP-sys) [mmHg], (c) diastolic arterial blood pressure (ABP-dias) [mmHg],
and (d) peripheral blood oxygen saturation (SpO2) [percentage]. Original
measurements from the MIMIC-numerics database are provided every sec-
ond. NA-threshold values were determined according to medical literature.
PhysioNet also provides PhysioToolkit, a software library for physiological
signal processing and analysis. We used some PhysioToolkit tools (e.g., the
rdsamp utility/command) for extracting the desired data from the databases
and during the preprocessing phase.

3.2 Clustering Algorithm Selection

We considered many clustering techniques (e.g., partitioning, hierarchical, and
density-based). We focused on partitioning and hierarchical techniques [5],
which were available in the statistical open-source environment R [6]. Parti-
tioning algorithms, such as k-means, performed worse than hierarchical algo-
rithms, because they clustered also normality situations in different risk levels.
Figure 6a shows this wrong behaviour. Hierarchical clustering algorithms may
use different methods to compute the inter-cluster distance. In our context,
the average linkage method yields better results than single linkage (which
forms chains of points), complete linkage, or ward. Figure 6b shows clusters
obtained by applying the average linkage method. We finally observe that the
clustering algorithm is a single, modular component of our framework. Any
suitable algorithm may be easily integrated in place of the current one.

3.3 Sliding Window Size

The size of the sliding window models the effect of the recent past on the
current situation. The longer the sliding window, the less the moving average

(a) k-means algorithm (b) hierarchical algorithm, average
linkage method

Fig. 6. Effect of different clustering algorithms
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Fig. 7. Effect of the sliding window size

follows any sharp trend of a measure. Decreasing the sliding window size in-
creases the rapid adaptation of risk evaluation to abrupt changes in a measure.
The offset is the risk component affected by variations of the sliding window.
It is based on the moving average value, which is strongly affected by the
sliding window length. The effect of different sliding window sizes on the risk
diagram is plotted in Fig. 7, with sliding window size of 2 and 60 min respec-
tively. The variation of the sliding window size allows the IGUANA framework
to adapt to different patient conditions. When a small sliding window size is
considered, sudden changes of physiological values are quickly detected as po-
tential risk conditions (see Fig. 7a). However, due to therapy side effects or
a very active life style, some patients may be allowed to have quick changes
in physiological values without being in danger. In this case, a longer sliding
window may smooth the effect of a short, abrupt change in the context of a
normal, steady situation (see Fig. 7b).

3.4 Sampling Frequency

The sampling frequency value directly affects the alarm activation delay. Every
measure is assigned a risk level, which can potentially trigger an alarm. Hence,
a dangerous situation can be identified within the next measure, which is in a
sampling period time. For example, to identify a heart failure soon enough to
have good chances of life-saving intervention by an emergency staff, the longest
alarm activation delay should be 15 s. Longer delay values may be suitable for
different purposes. The IGUANA framework is able to easily adapt to diverse
sampling frequencies. Since sensor measures may be provided with different
frequencies, in this context the adaptability of the IGUANA framework be-
comes essential. The effect of two different sampling frequencies on the risk
diagram is highlighted in Fig. 8, where the sampling frequencies are 5 and
60 s, respectively. When the sampling frequency is high, even subtle, short



www.manaraa.com

230 D. Apiletti et al.

120

100

80

60

40

risk level risk level

0 5000 10000 15000 20000 25000 30000

A
B

P
d

ia
s 

[m
m

H
g

]
120

110

100

90

80

70

60

50

40

A
B

P
d

ia
s 

[m
m

H
g

]

sample sequence number
0 500 1000 1500 2000 2500

sample sequence number

(a) 5 minutes (b) 60 minutes

Fig. 8. Effect of the sampling frequency

anomalies are detected (see Fig. 8a), while a longer sampling period hides
some of the sharpest spikes, but correctly identifies the remaining unsafe sit-
uations (see Fig. 8b).

3.5 Risk Function Weights

Risk function weights are among the most important parameters of the frame-
work, because they directly determine the effect of each risk component (slope,
offset, and dist) on the computed risk value. Hence, a physician is allowed to
customize these settings according to the clinical conditions of the patient and
the kind of anomalies to be detected. We report the results of some experi-
ments performed to show the separate effect of the different risk components.
All experiments are performed on the same sample dataset. They have no
direct medical value, but demonstrate the adaptability of the framework to
a wide range of situations. In Fig. 9 risk evaluation is only based on the off-
set component (slope and dist weights are set to zero). Risk rises with the
distance between the measured value and the moving average. Such setting
allows a physician to reveal deviations from a stationary behavior dynamically
evaluated. In this case, positive or negative spikes in the signal time series are
identified as dangerous situations. To separately analyze positive and negative
contributions of the offset component, the offset weight wo is set to 1 only for
positive offset values in Fig. 9a, and only for negative offset values in Fig. 9b.
When it is necessary to identify abrupt increases in a given measure, the slope
risk component should be considered. This kind of analysis allows a physician
to focus on rapid changes in the physiological behavior of the patient.

3.6 Performance

The IGUANA prototype has been developed in the R environment [6]. In
our experiments, we evaluated the performance both of the off-line model



www.manaraa.com

Global Unsafe Anomalies and Alarm Activation 231

120

100

80

60

40 risk level

A
B

P
d

ia
s 

[m
m

H
g

]

0 5000 10000 15000

sample sequence number

120

100

80

60

40
risk level

A
B

P
d

ia
s 

[m
m

H
g

]

0 5000 10000 15000
sample sequence number

(a) positive offset only (b)  negative offset only

Fig. 9. Effect of risk function weights

building phase and of the on-line classification phase. Model building experi-
ments have been performed on an AMD Athlon64 3200 + PC with 512 Mb
main memory, Windows XP Professional operating system and R version
2.1.1. Classification experiments have been performed on an AMD AthlonXP
2000 + PC with 512 Mb main memory, Windows 2000 Professional and R
version 2.1.1. For model building, we compared the performance of differ-
ent clustering algorithms (i.e., partitioning and hierarchical). As expected,
the k-means algorithm is about 60 times faster than the hierarchical algo-
rithm and shows a better scalability with increasing data cardinality. How-
ever, since model creation is performed off-line, the selection of the clustering
algorithm has been based on the quality of generated clusters, rather than
performance. With hierarchical clustering algorithms, different methods for
computing inter-cluster distance may be adopted. Different distance compu-
tation methods show a negligible effect on performance. Hence, again, the
selection of the average linkage distance method was driven by cluster quality
issues. Models with thousands of measures, generated by means of hierarchical
clustering, are created in tens of minutes.

Performance of the classification phase is more critical, since this task is
performed on-line. Furthermore, to be able to deliver real-time classification
of incoming sensor data, the time requested by the classification of a single
measurement set has to be less than the sampling period of the sensors.

Table 2 reports the time required for classifying a single measurement
of every physiological signal. The MIMIC datasets, listed in column 1, have
been identified by the name of the database (e.g., mimic), the short name
of the patient’s disease (e.g., angina), the patient’s sex and age (e.g., m67
indicates a 67 year old man), the recording length in hours (e.g., 55 h), and the
MIMIC-numerics record ID (e.g., 467n). Column 2 in Table 2 reports the total
number of measurements analyzed for each patient, while column 3 reports
the classification time for a single measurement. To obtain stable performance
values, we separately repeated the classification step 5 times. Column 3 reports
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Table 2. Classification time

Dataset Measure samples Classification time (ms)

mimic-angina-m67-55h-467n 51,716 0.36
mimic-bleed-m70-77h-039n 72,528 0.38
mimic-brain-m60-42h-280n 43,900 0.40
mimic-cabg-f80-57h-457n 54,060 0.38
mimic-cardio-f71-50h-293n 47,028 0.28
mimic-NA-f66-58h-276n 54,528 0.40
mimic-NA-m75-51h-474n 36,092 0.35
mimic-pulmEde-f92-71h-414n 23,488 0.36
mimic-pulmEde-m70-69h-466n 64,372 0.38
mimic-renal-f78-62h-471n 58,748 0.38
mimic-resp-f64-53h-403n 39,996 0.38
mimic-sepsis-f82-42h-269n 40,452 0.32
mimic-trauma-f92-51h-482n 40,312 0.31
mimic-valve-f77-52h-479n 49,304 0.32
mimic-resp-m90-46h-243n 43,748 0.21

classification times averaged on the 5 iterations. Classification time for a single
measure is always less than 0.5 ms. The memory for the data needed by the
classification process is estimated to be less than 50 bytes (supposing a 10
cluster model) for each physiological signal to be monitored.

We performed experiments with a mobile version of Iguana developed for
both the Pocket PC and the Smartphone architectures.

In Fig. 10 a sample screenshot of the mobile application is presented. The
instantaneous risk of each monitored vital sign is denoted as a number ranging
from 1–5 while the monitored signals are denoted as ABPsys, systolic blood
pressure, ABPdias, diastolic blood pressure, HR, heart beat rate, SpO2, pe-
ripheral blood oxygen saturation. To the right, the global risk is shown, to-
gether with the remaining battery power. Results are promising, since the
smart phone battery proved to last many hours. Memory resources are esti-
mated to be in the order of the hundreds of bytes for the data structures,
while the complete application can be run on a 2 MB equipped Smartphone
without restrictions. Since each measure requires tens of ms to be processed
by the mobile application on a smart phone equipped with an OMAP850 CPU
at 195 MHz, real time measure classification can be performed even at high
sampling frequency. These experiments highlight both the adaptability and
the efficiency of the proposed approach.

4 Related Work

Technological developments in miniaturization, diffusion of wearable medical
technologies, increasing capabilities of mobile computing devices, and spread-
ing of wireless communications improve mobile healthcare services for patients
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Fig. 10. Sample PocketPC screenshot

and health professionals. Furthermore, advances in health information systems
and healthcare technology offer a tremendous opportunity for improving care
quality while reducing cost [7]. Mobile health applications may play a key
role in saving lives by allowing timely assistance, in collecting data for med-
ical research, and in significantly cutting the cost of medical services. Non-
invasive medical sensors to measure vital signs (e.g., temperature, heart rate,
blood pressure, oxygen saturation, serum glucose) are currently under devel-
opment [8]. These sensors may be integrated in a body sensor network to
monitor various health parameters, thus providing a comprehensive view of a
patient’s condition. In this context dangerous situations may be timely recog-
nized by means of real time analysis and alarms may be sent to the closest
medical centre.

Several efforts have been devoted to the design of wearable medical sys-
tems [9, 10] and the reduction of power consumption of medical body sen-
sors [11–13]. Sensor devices, integrated into intelligent wearable accessories
(e.g., watches [14]), can collect physiological signals and transmit data to a
mobile device.

Once the physiological data have been collected, the mobile device may
send them to an elaboration centre for storage or physicians’ analysis (if the
elaboration centre is in the medical centre). In [15] the authors propose a
monitoring system, which integrates PDA and WLAN technology. Through
the WLAN, the patient’s signals are transmitted in real-time to a remote
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central management unit, and medical staffs can access and analyse the data.
Also the framework proposed in [16] is focused on a medical mobile system
which performs real-time telediagnosis and teleconsultation. Patient measures
are collected by a DSP-based hardware, compressed in real-time, and sent to
the physicians in the hospital. The main advantage of these approaches is the
simplicity of the architecture, which does not require any intelligence to the
devices, since the analysis is performed in the elaboration centre. However,
since this architecture introduces a delay for data transmission, it may cause
a delay in detecting a critical condition. Furthermore, it requires the presence
of physicians to monitor patients also in normal conditions.

If the mobile device is equipped with appropriate intelligence, it can
process the physiological data locally and automatically generate alarms [17].
When the device detects a dangerous situation, it can send an alarm to the
medical centre. In this way, data are transmitted only when unsafe situa-
tions occur and data compression is not strictly required. In [18] the authors
concentrate on improving transmission of emergency messages, which must be
reliably delivered to healthcare professionals with minimal delays and message
corruption. They propose a network solution for emergency signal transmis-
sion using ad hoc wireless networks, which can be formed among patient-worn
devices.

One step further towards the elaboration on mobile devices is proposed
in [19] where a PDA is exploited to receive data from medical sensors and to
transmit them over bandwidth-limited wireless networks. The authors specifi-
cally address the problems of managing different medical data (e.g., vital bio-
signals, images), developing an easy interface (for doctors) to view or acquire
medical data, and supporting simultaneous data transfers over bandwidth-
limited wireless links.

Many efforts have been dedicated to improving hardware and connectiv-
ity among devices [1, 3], but less attention has been devoted to investigating
analysis techniques to assess the current risk level of a patient. However, the
definition of efficient algorithms that automatically detect unsafe situations
in real-time is a difficult task. In [10] an algorithm to discover physiological
problems (e.g., cardiac arrhythmias) based on a-priori medical knowledge is
proposed. Physiological time series recorded through sensors may be exploited
for learning usual behavioural patterns on a long time scale. Any deviation
is considered an unexpected and possibly dangerous situation. More recently,
in [20] the extraction of temporal patterns from single or multiple physiological
signals by means of statistical techniques (e.g., regression) is proposed. Sin-
gle signal analysis provides trend descriptions such as increasing, decreasing,
constant and transient. Instead, multiple signal analysis introduces a signal
hierarchy and provides a global view of the clinical situation. Furthermore, a
machine learning process discovers pattern templates from sequences of trends
related to specific clinical events. The above mentioned solutions either are
limited to specific physiological signals, or require some kind of a-priori infor-
mation or fixed thresholds, or address related but different problems, such as
detecting long term trends.
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5 Conclusions and Future Work

IGUANA is a flexible framework that performs the real-time analysis of clini-
cal data collected by a body sensor network. An off-line analysis is performed
to build a model of both normal and unsafe situations. This model may be
tailored to a specific patient disease. On-line analysis classifies each measured
value assigning a risk level according to the previous model. Experimental
results, performed both on personal computers and on mobile devices (e.g.,
smart phone) show the adaptability of the proposed approach to patients
affected by different diseases and its computational efficiency. Future devel-
opments of the framework will explore different techniques to further improve
the modeling phase. Two issues will be addressed (a) the analysis of the cor-
relation among different physiological signals which contribute to a global
clinical situation and (b) for specific physiological signals, the exploitation of
samples in a larger time window to detect in advance dangerous situations by
their early behaviors.
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Summary. DNA micro-array analysis allows us to study the expression level of
thousands of genes simultaneously on a single experiment. The problem of marker
selection has been extensively studied but several aspects need yet to be addressed.
In this study we add an important attribute of gene selection by considering the
‘quality’ of the selected markers. By the term ‘quality’ we refer to the property that
a set of selected markers should differentiate its expression between the two possible
classes of interest (positive, negative). Thus, we address the problem of selecting a
small subset of representative genes that would be adequate enough to discriminate
between the two classes of interest in classification, while preserving low intra-cluster
and high inter-cluster distance, which eventually leads to better survival prediction.

1 Introduction

The advent of micro-array technology has given scientists a valuable tool
to monitor the behavior of thousands of genes in a single experiment. The
behavior of each gene is kept in a separate cell in an m by n matrix, where each
row corresponds to a different gene while each column to a different experiment
(sample). In a post experimental step, the expression level (behavior) of each
gene is recorded in terms of a color map. Many color schemes have been used
but green–black–red is the prevailing one. A green colored cell manifests that
the specific gene has expressed itself more in the normal than in pathological
situation, a red color in a cell implies exactly the opposite while a black color
means that the specific gene has expressed itself in exactly the same way
in both situations. Colors are translated into numbers on an open interval
[−3,+3] for instance, −3 means red, 0 means black and +3 means green.

In these kinds of experiments we encounter the problem that the number
of attributes (genes or rows of the matrix) is much larger than the number
of samples (columns of the matrix). Usually the number of genes is of the
order of thousands while the number of columns (samples) is of the order of
tenths. This problem has been extensively considered in micro-array analysis
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through techniques that decrease the number of dimensions (genes) usually
in an iterative manner. Outstanding works have been previously published
addressing this problem in real domains showing encouraging results. We urge
the interested reader to refer to the work of [8,18,19], while for a more technical
work we site references such as [9,10,16,23]. In this study we test the ability of
intelligent systems to tackle the so called “curse of dimensionality” by using
intrinsic attributes of the data.

Marker (feature) selection methods can be divided into two categories
namely, filter and wrapper methods. Filter methods focus on the intrinsic
properties of data using various stochastic metrics such as Fisher’s ratio or
information gain among many others. Genes are ranked according to how
they score on such a measure and the highly ranked genes, which give the
highest classification accuracy, are then selected as markers. Wrapper meth-
ods on the other hand work in a recursive way, where a classifier is used to
assign a relevance weight to each feature and then the feature with the lowest
weight is eliminated. In the next iteration cycle weights are re-assigned and
the process continues recursively, in a way that more than one features could
be eliminated in each iteration. At the end of the process, the set of features
achieving the highest classification accuracy is selected as the set of markers.
The main difference between these two approaches is that wrapper methods
work in an iterative manner where feature weights are re-evaluated and po-
tentially changing from iteration to iteration, while in filter methods weights
are evaluated once and remain stable throughout the selection process. It has
been shown by various studies that the performance of wrapper methods can
be superior to the performance of filter methods, we selectively refer to [11].

Concerning the desirable attributes of the selected markers, we are search-
ing for a set of genes that would be able to predict correctly the label (class)
associated with unseen samples. In addition, these genes should be able to
preserve a similar expression within each class, while showing a variation on
their expression levels across the two situations of interest, i.e. positive or
negative state. We refer to this intrinsic property as the quality of the se-
lected markers. This fact has been implicitly stated in almost every marker
selection study; we selectively refer to, [1, 3, 13, 14, 18, 19]. It has also been
explicitly stated by 18, 10, as well as Hastie et al. 2000. The credibility of a
set of marker genes with high classification accuracy, which however is not
able to show this kind of behavior, is questionable. The set of markers we are
searching for should maintain a low intra-class but a high inter-class distance.
Nevertheless, it is worth stressing the fact that most of the studies focus on
classification accuracy ([9, 11, 23, as well as many others]) rather than on the
quality of the selected markers. In this study we assess such an approach as to
select marker genes that share the intrinsic characteristic of high inter-class
but low intra-class distance.

Another important issue concerning marker selection has to do with the
classification performance of the selected markers. It is a common practice to
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assess the performance of a method by its Leave One Out Cross Validation
(LOOCV) error. Two types of LOOCV schemes are generally considered. The
first one addresses the removal of the left-out sample before the selection of
differentially expressed genes and the application of the prediction rule, while
the second approach handles the removal of the left-out sample after the
selection process but before the application of the prediction rule. The first
is usually referred to as the External LOOCV (ELOOCV) while the second
is referred to as the Internal LOOCV (ILOOCV), [2,17]. In the ILOOCV the
entire training set is used in the feature selection process and the LOOCV
strategy is applied after the feature selection process. On the other hand, in
the ELOOCV each sample is left out before any selection process takes place
and the prediction rule is then tested on that left out sample. It is obvious
that ELOOCV is a more unbiased estimator of the error rate since it is totally
independent of the selection process. However, ILOOCV provides a measure
which can not be neglected, as it expresses the training ability of a selection
rule within the training set. In other words it indicates the prediction rules
that can learn or generalize better on the training set, which eventually could
lead to a better generalization performance on a totally independent test set.

In this study we propose to apply a linear neuron in a wrapper manner as
a marker selector trained through the Resilient Back Propagation (RPROP)
method, and compare its performance with a representative wrapper method
known as Recursive Feature Elimination based on Support Vector Machines
(RFE-SVM) introduced by [9]. RFE-SVM has shown remarkable performance
on the leukemia data set published by Golub et al. [8]. The criteria we are using
to measure and compare the performance of the two approaches are ILOOCV
as a measure to assess the performance of the two methods on the training
set and independent test set evaluation, as a measure to assess their ability
to generalize on new or unseen data. Besides accuracy metrics, we also assess
their ability to select differentially expressed genes, though the Davies Bouldin
(DB) index [7], as well as the survival prediction of the expression profile of the
selected markers derived by the underlined methods through Kaplan–Meier
curves. Our domain of application is the breast cancer data set published
by [19].

2 Background Knowledge

Before we proceed it is essential to provide the basic background knowledge
on support vector machines and neural networks necessary for understanding
and grasping the concepts underlined on the marker selection problem.

2.1 Support Vector Machines

SVM [20] attempts to find the best separating hyperplane to distinguish be-
tween the two classes of interest, positive (+1) and negative (−1). This is done
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by maximizing the distance 2
‖w‖ between the two parallel lines (w · x )+ b = 1

and (w · x )+ b = −1, which form the margin of separation of the two classes.
The final separating hyperplane passes through the middle of this margin with
equation (w · x )+b = 0. The decision function then, is a function of the form:

f (x) = sgn ((w · x ) + b) (1)

where w represents the direction vector of the hyperplane. The sign of the
value returned by (1) indicates the predicted class associated with example x,
while |f (x)| indicates the confidence level of the resulting decision. The SVM
problem can be equivalently formulated as follows:

minimize
1
2
‖w‖+ C

n∑
j=1

ξ2
i

subject to yi ((w · x j) + b) ≥ 1− ξj , ξj ≥ 0, j = 1, . . . n

(2)

By the duality theory, a tutorial of which can be found in [6], the problem can
be transformed to the following maximization problem, where λ represents
the vector of Lagrange multipliers and yi represents the label (either +1 or
−1) of the ith

maximize
λ∈in

n∑
j=1

λi −
1
2

n∑
i,j=1

λiλjyiyj (x i · x j)

Subject to

⎧⎨
⎩

n∑
j=1

λjyj = 0

0 ≤ λj ≤ C, j = 1,K, n

(3)

sample. Towards the solution of this problem, we obtain the following expres-
sion for the direction vector w :

w =
n∑

j=1

λjyj x j (4)

which is actually an expansion of those training samples with non-zero λi, i.e.
the support vectors. It can be proved that support vectors lie on the borders
of the class regions (as demonstrated Fig. 1) and can be used to find b by
substituting one of the support vectors to the following equation:

yj ((w · x j) + b) = 1. (5)

An important issue making SVMs attractive is that they allow the use of
kernels, so that the dot product in (3) can be replaced by a kernel function
in the following form:
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Fig. 1. Binary classification problem, showing the margin of separation between
the two classes; circled points represent the support vectors

maximize
λ∈in

n∑
i=1

λi −
1
2

n∑
i,j=1

λiλjyiyjk (x i,x j)

Subject to

⎧⎨
⎩

n∑
j=1

λjyj = 0

0 ≤ λj ≤ C, j = 1, . . . , n

(6)

Besides the linear kernel in (3), other types of kernels such as polynomials
of any degree, as well as Radial Basis Functions (RBF) can be used in the
forms of:

k (x ,y) = (1 + (x · y))d

k(x ,y) = exp
(
−γ ‖x − y‖2

) (7)

2.2 The RFE-SVM Marker Selection Method

The RFE-SVM method [9] is based on SVM [20] and the idea of ranking
features according to the absolute value of the components of the direction
vector w . As expressed in (4), each individual component of w is associated
with an individual component of vector x , which is the expression level of
an individual feature. Thus, every feature (gene) is multiplied by a weight;
the larger the absolute value of its weight, the more important that feature
is according to RFE-SVM, in the sense that it contributes more to the deci-
sion function of (1). As a consequence, genes can be ranked according to the
absolute value of the individual components of w . A general overview of the
method is given in the following steps:
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3 Proposed Methodology

In this study we plan to take advantage of the fact that neural networks
are open systems with many free parameters which can be adapted to the
needs and peculiarities of the problem under consideration. Most frequently
addressed parameters are the type of network that will be used, the number
of neurons (Fig. 2), the number of layers, the learning rate and of course the
training procedure that could best feet to the problem under consideration.
SVMs on the other hand are more stable systems with very few parameters
to be fine tuned; such as the C value and the type of kernel. Even though
this generally seems to be an advantage there are case where more flexible
adaptation abilities might be needed.

RFE-SVM uses a linear kernel through (1) to estimate the weight vector of
the separating hyperplane. We know that a Linear Neuron (LN) can be used
to approximate any linear function. We propose to use such an approach to
approximate the separating hyperplane between positive and negative classes
in place of the linear SVM used in the RFE-SVM method. This is applied as a
linear neuron of m inputs and one output, where m corresponds to the number
of genes. Considering two possible outcomes at the output layer, namely output
0 for the negative class and 1 for the positive class, we can use such a neuron
to estimate the weight vector w of the separating hyperplane, as for step 3 in
Table 1.

∑ f

g2

gm

u y

g1

Fig. 2. A single neuron used as a marker selector

Table 1. The recursive feature elimination based on SVM (RFE-SVM) algorithm

(1) Let m be the initial number of features
(2) While (m ≥ 0)
(3) Estimate the direction vector w of the separating hyperplane using linear

SVM.
(4) Rank features according to the components of |w |.
(5) Remove the feature with the smallest weight in absolute value

(m ← m − 1); more than one feature can be removed per iteration.
(6) Estimate LOO accuracy of the m surviving features using a linear SVM

classifier.
(7) End While
(8) Output as marker genes the set of surviving features which achieves maxi-

mum LOO accuracy.
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3.1 Back Propagation Training

According to neural network theory the error function of a single neuron that
needs to be minimized is given by:

E =
1
2

n∑
j=1

(dj − yj)
2 (8)

where

yj =
1

1 + euj
= f (uj) (9)

uj =
m∑

i=1

wigij (10)

and
f ′ (uj) = yj (1− yj) (11)

where n corresponds to the number of samples, dj represents the desirable
neuron output associated with sample j and yj is the actual output produced
by the neuron for the given sample. Through a gradient descent method for
the minimization of (8), wi associated to gene gi is updated as follows:

wi (t + 1) = wi (t) +
(
−µ

∂E
∂wi

)
= wi (t)−

(
µ

∂E
∂wi

)

= wi (t)−
n∑

j=1

(
∂E
∂yj

∂yj

∂u

∂u

∂wi

)
(12)

where

wi (t + 1) = wi (t)− µ

2

n∑
j=1

(−2 (dj − yj) yj (1− yj) gij)

= wi (t) + µ

n∑
j=1

(dj − yj) yj (1− yj) gij (13)

= wi (t) + µ

n∑
j=1

(dj − yj) f ′ (uj)gij

finally

wi (t + 1) = wi (t) + µ

n∑
j=1

ejf
′ (uj)gij (14)

where t represents current iteration and µ is the learning rate and

ej = (dj − yj) . (15)
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3.2 Resilient Back Propagation (RPROP) Training

Neural networks often use sigmoid functions, (9), which are often called
“squashing” functions since they compress the input range into an output
range within [0L 1]. Sigmoid functions are characterized by the fact that their
slope approaches zero as the input gets larger. This leads to the side effect of a
gradient magnitude close to zero, which in turn leads to very small changes in
the weights of the network, even though they might be far from their optimal
values. This can be verified by (14), where when the second term of the right
hand side is close to zero, the weights are updated by a very small increase or
decrease.

Resilient back propagation [15] alleviates this effect by taking into con-
sideration only the sign of the derivative and then increasing or decreasing
the weight by a small factor of n+ or n−. Whenever the derivative of the
error function E has the same sign for two consecutive iterations, the update
value is increased by a factor n+. On the other hand, whenever the derivative
changes sign in two consecutive iterations, indicating that the last update
was too big and the algorithm has jumped over a local minimum, the update
value is decreased by a factor η−. An overview of the algorithm is presented
in Table 2. The choice of n+ = 1.2 and n− = 0.5 in several domains have
shown very good results and these are the values used for the experiments
conducted in this study. The remaining parameters ∆0 and ∆max were set to
their default values 0.7 and 50 respectively [15].

Following our previous discussion, we propose to use a linear neuron
trained through RPROP algorithm as the weight vector estimator in place
of step 3 in Table 1. Thus, our methodology proposes to use a linear neuron
instead of a linear SVM to tackle the problem of marker selection. We refer to
the proposed methodology as Recursive Feature Elimination based on Linear
Neuron Weights (RFE-LNW).

4 Cluster Quality Measure

Besides the gene selection methodology, it is essential to provide a measure for
assessing the ‘quality’ of the selected markers in terms of inter- and intra-class
distance. The validity or quality of features that survive at each step of the
elimination process is an issue of particular interest. Based on the desirable
properties of markers, the surviving genes should form well defined clusters
related to the pathology states of interest. In other words, the clusters of
marker genes should express small intra-class but large inter-class distance [4].
One measure to asses cluster quality is known as Davies-Bouldin index (DB)
[7] that has been extensively used to assess cluster quality in various fields
besides DNA micro-array analysis [5, 21, 22]. The DB index for a partition
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Table 2. The Resilient back propagation (RPROP) training algorithm

∀i : ∆i (t) = ∆0

∀i : ∂E
∂wi

(t − 1) = 0
Repeat

Compute gradient ∂E
∂w

(t)

For all weights and biases

If
(

∂E
∂wi

(t − 1) ∗ ∂E
∂wi

(t) > 0
)

then

∆i (t) = min
(
∆i (t − 1) ∗ η+, ∆max

)
∆wi (t) = −sign

(
∂E

∂wi
(t)

)
∗ ∆i (t) (16)

wi (t + 1) = wi (t) + ∆wi (t) (17)

∂E
∂wi

(t − 1) = ∂E
∂wi

(t)

Else if
(

∂E
∂wi

(t − 1) ∗ ∂E
∂wi

(t) < 0
)
then

∆i (t) = ∆i (t − 1) ∗ η−

∂E
∂wi

(t − 1) = 0

Else if
(

∂E
∂wi

(t − 1) ∗ ∂E
∂wi

(t) = 0
)

then

∆wi (t) = −sign
(

∂E
∂wi

(t)
)
∗ ∆i (t)

wi (t + 1) = wi (t) + ∆wi (t) (18)

∂E
∂wi

(t − 1) = ∂E
∂wi

(t)
End

End
Until converged

U that is composed of two clusters, namely XP corresponding to the positive
class and XN to the negative class, is given by:

DB (U) =
∆ (XP ) + ∆ (XN )

δ (XP , XN )
(19)

where δ (XP , XN ) corresponds to inter-class distance given by:

δ (XP , XN ) =
1

|P | |N |
∑
x∈P
y∈N

d (x, y) (20)

d (x, y) is the Euclidean distance between two samples x and y and ∆ (XP )
represents the intra-class distance given by:

∆ (XP ) =
1

|XP | (|XP | − 1)

∑
x,y∈S

d (x, y) (21)
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with ∆ (XN ) analogously defined. Optimization of the DB index minimizes
intra-class distance while it maximizes inter-class distance. Therefore, smaller
DB values reflect better clusters.

5 Experimental Results

The two applied methodologies were tested on the data set published by [19]
on breast cancer. The data set consists of 24,481 gene expression profiles and
78 samples, 44 of which correspond to patients that remain disease free for a
period of at least five years, whereas 34 correspond to patients that relapsed
within a period of five years. 293 genes express missing information for all 78
patients and were removed, while other missing values were substituted using
Expectation Maximization (EM) imputation [12]. In each iteration cycle, so
many genes were removed as for the remaining ones to form the closest power
of 2 up to 1,024 surviving genes. Then, 124 genes were removed to end up
with 900 surviving features. From this point on and up to 200 surviving genes,
100 genes were eliminated in each iteration cycle up to 200 genes. From 200
surviving genes down to 100, ten genes were eliminated (per iteration) and,
finally, after 100 surviving genes one gene was eliminated (per iteration) up
to the end of the process. With this scalable scheme, elimination is refined as
we proceed towards smaller number of surviving genes.

For the conducted experiments 150 epochs were used to train the linear
neuron with all its weights and biases initialized to zero along with the para-
meter values given in Sect. 0. Concerning RFE-SVM the C value, (6), was set
to 1,000. We emphasize that various C values were tested such as (1, 10, 100
and 1,000) and resulted in no significant differentiation on the performance of
the algorithm, values of less than 1 did not give any better results.

TIGR Mev 4.0 was used as our clustering and gene expression visual-
ization tool, JMP6 statistical software was used to derived the produced
Kaplan–Meier curves in subsequent sections, while Matlab 7.01 was our im-
plementation platform.

5.1 Internal Leave One Out Experiment

The ILOOCV is used as a measure of estimating the learning ability of the
studied methodologies rather than as a measure of independent generaliza-
tion performance. Besides ILOOCV in these experiments we also measure the
quality of the selected features in terms of low intra but high inter class dis-
tance. The DB index is used as a measure to asses clustering performance,
where the lower value reflects the better the cluster of markers.

Accuracy and quality results of the two tested methodologies are depicted
in Fig. 3a,b respectively. Concering ILOOCV (Fig. 3a) both methodologies
show more or less about the same performance on the average up to the
point of 20 surviving features. After that point a minor advantage comes with



www.manaraa.com

Marker Selectors in Cancer Gene Analysis 247

600 140 94 84 74 64 54 44 34 2015 4 600 140 94 84 74 64 54 44 34 2015 4
50

60

70

80

90

100

Number of Genes

S
uc

ce
ss

 R
at

e

RFE-LNW
RFE-SVM

1.7

1.75

1.8

1.85

1.9

1.95

2

Number of Genes

D
B

 In
de

x

RFE-LNW
RFE-SVM

(a) (b)

Fig. 3. ILOOCV and Quality results of the two tested methodologies
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Fig. 4. Sets of markers selected by the two tested methodologies, RFE-LNW (left)
and RFE-SVM (right)

RFE-LNW. Another important point is that RFE-SVM finally selects 20 genes
with a 100% classification accuracy, while RFE-NNW selects a smaller number
of genes (15) with a perfect classification accuracy as well. Thus, as a final
conclusion on ILOOCV we state that there is minor advantage for RFE-LNW
since it selects a smaller number of genes as markers.

Concerning the quality of the selected markers through out the entire
feature elimination process (Fig. 3b) we notice a significant advantage of RFE-
LNW over RFE-SVM. Thus in terms of cluster quality RFE-LNW produces
more compact and well distinguished clusters of markers.

5.2 Expression Profile

In order to emphasize the difference of the two tested methodologies through
visualization of the results we demonstrate in Fig. 4 two sets of markers se-
lected by the two tested methodologies; genes are ranked according to Fisher’s
correlation. In Fig. 4a, b the expression profile of the 60 gene marker signa-
tures selected by RFE-LNW and RFE-SVM are depicted respectively. In these
two figures we notice the advantage of RFE-LNW over RFE-SVM to select
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more compact and distinctive clusters of marker genes.This can be verified by
noticing that the 60 gene signature selected by RFE-LNW (Fig. 4a) defines
more compact and well defined regions of gene expressions, where we can
discriminate four different and clear areas of expression levels. These areas
define the difference on the behavior of the selected markers between the two
classes of interest, that is; genes that are green in negative class are red in
positive and vise versa. On the other hand, the 60 gene signature selected by
RFE-SVM (Fig. 4b) is showing a lower level of distinction between positive
and negative class than RFE-LNW. The different areas of expression levels
are not as distinct and well defined as before. This observation is also verified
by the DB index, being 1.84 for RFE-LNW and 1.91 for RFE-SVM. Simi-
lar observations are also verified through (c) and (d) parts of Fig. 4 where
the expression level of the final 15 and 20 markers selected through ILOOCV
of RFE-LNW and RFE-SVM methods are depicted, respectively. Overall we
emphasize that RFE-LNW produces more compact and distinctive clusters of
gene signatures than RFE-SVM. This fact is verified by the results derived
through DB indexing in Fig. 3b as well as by visualization of the selected
markers, Fig. 4.

5.3 Expression Profiles as Survival Predictors

Inspired by the work of [19], as well as [18] where the expression profile was
used as a survival predictor with very encouraging results, we also examine
the survival prediction ability of the two expression profiles derived by the
two methodologies i.e., the 15 and 20 marker signatures. For this experiment
we conducted a Self Organizing Map (SOM) clustering on the derived profiles
as an attempt to discover the two classes of patients that are hidden behind
those two profiles. The two clusters derived by each of the two methodologies
are depicted in Figs. 5 and 6 (rows correspond to genes, columns to patients).

T- T- T- T- T- T- T- T- T- T- T- T- T- T- T- T- T- T
T- T- T- T- T- T- T- T- T- T- T- T- T- T- T- T- T- T-

T- T- T- T- T- T- T- T-T- T

T T T T T T T T T T T T T TT T T T T T T T TT T T T T T T TT

Fig. 5. The two clusters discovered by SOM using the 15 marker signature selected
by RFE-LNW
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Fig. 6. The two clusters discovered by SOM using the 20 marker signature selected
by RFE-SVM
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Fig. 7. Kaplan–Meier survival curves of the two tested methodologies: RFE-LNW
(a), RFE-SVM (b)

The SOM was trained using 2× 105 epochs with the Euclidean distance and
average dot product similarities measures for RFE-LNW and RFE-SVM pro-
files, respectively. The applied similarity measures were experimentally found
to produce best results on the examined expression profiles.

As a next step, we used the follow up times provided for the examples
under consideration as well as the cluster label to which each example was
found to belong, in order to draw the Kaplan–Meier survival curves for the
corresponding two expression profiles in Fig. 7. It can be verified that the
marker signature derived by RFE-LNW is a better survival predictor than
the expression profile derived through RFE-SVM in Fig. 7, where blue curves
correspond to good prognosis and red to poor prognosis group.

We emphasize here that the profile selected by RFE-LNW is an efficient
survival predictor since the conducted SOM clustering discovered the two
classes with a high accuracy of 87%, i.e. 36/44 (82%) negative samples and
32/34 (94%) positive samples were successfully clustered. On the other hand
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the profile derived via RFE-SVM clustered correctly the 69% of samples, i.e.,
24/44 (55%) of negative samples and 30/34 (88%) of positive samples. It is
worth noticing that even though the clustering of the expression profile derived
by RFE-SVM is poor in accuracy compared to that derived by RFE-LNW, it
is good in survival prediction since its sensitivity (percentage of true positive
samples) is high.

6 Independent Test Set Evaluation

In this experiment we examine the ability of the two tested methodologies
to generalize on new or unseen data. For the purpose of such an experimen-
tation we used the independent data set published by [19] which consists of
19 samples, 7 of which are characterized negative and correspond to patients
that remain metastasis free for a period of at least five years, and 12 positive
corresponding to patients that relapse within a period of five years.

At each stage of the feature elimination process the training set was used to
derive the weight associated with each gene and, thus, the discriminating hy-
perplane between the two classes. The success rate of the derived hyperplane
was then tested on the independent test set. Lowest ranked genes were after-
wards and as described earlier in Sect. 0 eliminated and the process continued
until the gene list was exhausted. An overview of the performance of the two
tested methodologies on the independent test set is visualized in Fig. 8. We
demonstrate performance up to 10 surviving genes, since after this point both
methods start to misclassify training samples (apparent error is greater than
zero). Examining the figure above we notice that the generalization ability of
RFE-LNW on unseen data is remarkable, preserving its performance within
the range of 100–45 surviving features to at least at 80%. Within this interval
it achieves a 94.74% success rate, which corresponds to one missed sample;
the same performance is also achieved within the range of 64–62 genes (blue
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Fig. 8. Independent test set evaluation of RFE-LNW and RFE-SVM
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arrows). Finally the system selects 58 genes as markers with 94.74% success
rate (red arrow), since this is the smallest set of genes achieving the highest
classification accuracy. On the other hand the performance of RFE-SVM is
not as high, the maximum success rate achieved being 78.95% (4 missed sam-
ples). This system selects 32 genes as markers with 78.95% accuracy (green
arrow). Within the range of 40–10 surviving genes the performances of the
two methods are almost indistinguishable.

We emphasize that the result produced by RFE-LNW (58 markers, 94.74%
success rate) in terms of accuracy is comparable to the 89.47% achieved by
[19]. with 70 genes, to the 89.47% achieved by [16] with 44 genes, as well as
to the 89.47% achieved by [11] with eight genes. Unfortunately in the last
two studies cited above we are not given the gene name that achieved those
remarkable performances. Sequence numbers and systematic gene names of
the 58 marker genes selected by RFE-LNW and the 32 selected by RFE-SVM
are listed on Table 3 and 4 of the appendix.

6.1 Expression Profile as a Survival Predictor

In this experiment we examine the expression profile of the marker signature
selected by each of the two tested methodologies (the 58 markers selected
by RFE-LNW Table 3 and the 32 selected by RFE-SVM Table 4), from the

Table 3. Sequence numbers and systematic gene names of the 58 genes selected by
RFE-LNW

Sequence number Gene name Sequence number Gene name

196 AB033065 10,706 NM 004953
274 X89657 10,889 AL080059
407 NM 003061 11,711 AL080109
462 NM 003079 11,993 NM 007202
1,452 NM 019886 12,259 NM 006544
1,455 Contig30646 RC 12,794 NM 016023
2,131 X05610 12,796 NM 016025
2,603 NM 003331 13,037 NM 007351
2,744 Contig44278 RC 13,270 Contig5456 RC
3,232 NM 020123 13,800 Contig47544 RC
3,670 M26880 14,968 Contig2947 RC
3,737 U72507 15,199 Contig51847 RC
3,953 Contig57447 RC 15,801 Contig39673 RC
4,966 AB018337 16,223 NM 016448
5,088 NM 012325 16,474 Contig14882 RC
5,623 NM 003674 16,669 Contig51158 RC
6,239 NM 021182 16,952 NM 015849
7,126 NM 005243 17,375 NM 018019
7,509 NM 003882 17,571 NM 018089
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Table 3. (Continued)

Sequence number Gene name Sequence number Gene name

8,024 NM 004604 17,618 NM 015910
8,071 NM 013360 17,874 AK000903
8,255 NM 005371 18,891 NM 000127
8,305 AF094508 18,898 NM 018241
8,826 Contig29820 RC 19,462 Contig58156 RC
8,982 NM 004703 20,891 BE739817 RC
9,054 NM 004721 21,350 NM 000436
9,348 Contig53480 RC 21,919 NM 001204
9,735 NM 005551 22,333 Contig54041 RC
10,477 AB002297 23,665 Contig23964 RC

Table 4. Sequence bumbers and systematic gene names of the 32 genes selected by
RFE-SVM

Sequence number Gene name Sequence number Gene name

196 AB033065 10,029 Contig50396 RC
447 NM 001615 10,643 NM 020974
1,148 NM 003147 10,656 NM 006398
1,348 NM 019851 10,889 AL080059
1,409 NM 001756 11,671 NM 005794
1,707 Contig14836 RC 11,780 NC 001807
1,998 NM 003283 12,297 NM 006551
2,563 Contig23399 RC 12,709 Contig11072 RC
3,828 Contig16202 RC 13,140 NM 014665
4,350 NM 002809 16,690 Contig46304 RC
4,601 Contig29617 RC 16,777 Contig10750 RC
6,747 AF131741 18,312 NM 000067
7,404 Contig31000 RC 20,265 Contig24609 RC
8,335 Contig7755 RC 20515 NM 001062
8,513 AF221520 23,239 Contig53371 RC
9,730 Contig48328 RC 23,256 Contig50950 RC

training set, on the 19 samples of the independent test set using hierarchi-
cal clustering. We did not use SOM clustering as we did in Sect 0, since the
number of samples is relatively small yielding unstable clusters, i.e. signifi-
cantly different clustering results derived from run to run. In order to draw
safer and more objective conclusions, hierarchical clustering is used in place
of the SOM which is producing the results depicted in Fig. 9. Comparing
the two methodologies through Fig. 9, we notice that in case of RFE-LNW
Fig. 9a two well defined and distinctive clusters are revealed by the hierarchical
clustering procedure. However, we can not state the same for the markers
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Fig. 9. Hierarchical clustering result on the independent test of the markers selected
by RFE-LNW (a) and the corresponding Kaplan–Meier curve (b)
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Fig. 10. Kaplan–Meier curve of the clustering result produced by RFE-LNW marker
signature

derived through RFE-SVM, Fig. 9b. Clusters are not as well defined and dis-
tinctive as in the case of RFE-LNW, making our decision very subjective as to
where the line that discriminates the two hidden clusters is lying. This result
was derived using average dot product as a similarity measure with average
linkage, we should point out that the same scenario repeated itself using any
known similarity metric towards our attempt to locate two well established
and distinctive clusters on the markers of RFE-SVM.

Proceeding with the clustering derived by RFE-LNW, we use the given
follow up times and the cluster label each sample was assigned to, in order to
derive the Kaplan–Meier survival curve depicted in Fig. 10, where we notice a
significant differentiation on the survival prediction corresponding to the two
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clusters. One may argue that survival expectation of the good prognosis group
(blue curve) is poor since it reaches only 60%, at the end. Nevertheless, the
independent test set is relatively small (19 samples) to derive accurate survival
estimates, and even in this case the curve still lies above the 70% up to the
period of 5 years which is the most crucial one, discriminating significantly in
any case the two prognostic clusters.

7 Elaboration on the Results

An open issue which has not being resolved yet is to provide a theoretical ex-
planation of the produced results. A question of particular interest that needs
to be answered is: why RFE-LNW produces more compact and distinctive
clusters of markers than RFE-SVM? To answer this question we have to take
into consideration the training procedures of the underlined methodologies.
Equation (4), which is used by RFE-SVM to assign weights to the surviving
genes can be accordingly re-written as:

wi =
n∑

j=1

λjyjgij (22)

We notice that the value of wi depends strongly on the value of λj which
according to SVM theory is non-zero and probably different for support vec-
tor samples, while being zero for all remaining ones. Thus, weight wi of gene
gi is a summation of only those samples whose λi is non-zero i.e. the sup-
port vectors. We stress out that this (under certain conditions) is one of the
strong points of SVMs since only a small proportion of samples (the support
vectors) are actually responsible for training the system. At this point we
should emphasize that this fact might influence the algorithm especially in
the problem of gene selection where besides accuracy we are also interested in
selecting differentially expressed genes. The support vector samples lie close
to the borders of the separating hyperplane (see Fig. 1) and thus there might
exist cases where values of gij (expression level of gene i in sample j) are not
significantly differentiated from negative to positive class, since they might
lie very close to the border and reside close to each other. Taking this into
account, along with the fact that support vectors should and are only a small
proportion of the training samples we can address the inability of RFE-SVM
to provide significantly differentiated expressed genes (on the studied domain)
as an effect of the limited data samples that dominate the selection process.
In essence, the requirement for differential expression is much different from
that of accurate classification, which is the main objective of SVMs in the de-
finition of the separating hyperplane. In any case, we emphasize that a more
theoretical and mathematically rigorous study is still needed to address the
problem which however, is beyond the scope of the present chapter.
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C=0,g i j= − 3,e j≤ 0∀j

(a) (b)

(c) (d)

C=1,g i j=+3,e j≥ 0∀j

C=0,g i j= + 3,e j≤ 0∀j C=1,g i j=+3,e j≥ 0∀j C=0,g i j= − 3,e j≤ 0∀j C=1,g i j= − 3,e j≥ 0∀j

C=0,g i j=3,e j≤ 0∀j C=1,g i j= − 3,e j≥ 0∀j

Fig. 11. Differentially versus non-differentially expressed genes

In RFE-LNW on the other hand, RPROP is used to train the linear neu-
ron. Consider the RPROP algorithm presented in Table 2 and notice that
(16) and (17) in combination with (14) can be written as:

wi (t + 1) = wi (t) +

⎡
⎣µ

n∑
j=1

sign (ejf
′ (uj) gij)

⎤
⎦∆i (t) (23)

Consider also Fig. 11 which illustrates the expression level of a hypothetical
gene gi in negative (C = 0) and positive (C = 1) class respectively. In cases
(a) and (b) the hypothetical gene is differentially expressed in the two classes
of interest, green (negative values) in negative class and red (positive values)
in positive class or vies versa. In contrast cases (c) and (d) show no differ-
entiation on the expression level of the specific gene in the two situations of
interest. Considering case (a) in combination with (23) and focusing on the
negative class (green part), we notice that the term sign (ejf

′ (uj) gij) ≥ 0
holds indeed, ej is ≤ 0 (notice that d = 0 in this case and y takes values
[0 · · · 1]), f ′ (uj) ≥ 0 from (11) is always positive since again y ranges from
[0 · · · 1] and gij = −3. Thus the overall weight update is positive. Now focus-
ing on the positive class (red part) of case (a) and using the same syllogism
we notice again that sign (ejf

′ (uj) gij) ≥ 0 and the weight updata is again
positive. Following about the same reasoning in case (b) of Fig. 11 one may
show that (23) will produce a negative update. In contrast the summation
term of the same equation in cases (c) and (d) will produce a zero update.
Thus, genes that differentiate their expression between the two classes are
assigned higher weights in absolute value.

The difference of the two tested methodologies as it was expected is mostly
attributed to the learning procedure employed by each of the two methods.
SVMs are systems which have shown remarkable performance on a variety of
application domains but depending on the application and the peculiarities of
the problem under consideration they have weak and strong points. The main
difference of the two tested methodologies is that RFE-LNW is implicitly
searching for differentially expressed genes while RFE-SVM along with the
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majority of wrapper methods, focuses mostly on the problem of finding the
‘optimum’ hyperplane to discriminate the two classes, neglecting the fact that
selected genes should significantly differentiate their expression from positive
to negative class.

8 Discussion and Conclusions

In this study we examine the behavior of two well known and broadly ac-
cepted pattern recognition approaches, adopted appropriately to the problem
of marker selection in a micro-array experiment. Concerning Support Vector
Machines, a linear kernel SVM was applied through the RFE-SVM method.
In association to neural networks, an equivalent to the linear kernel, i.e. a
linear neuron, was applied through RFE-LNW method. Experiments were
conducted on the well known data set of breast cancer published by [19].
We emphasize that to our knowledge this is the first attempt to utilize and
test the linear neuron as a gene marker selector trained using the RPROP
algorithm [15], which is the key for the performance of RFE-LNW.

Experimental results demonstrate that RFE-LNW produces more compact
and distinctive clusters of marker signatures, which in turn yield better sur-
vival prediction when the expression profiles of the selected markers is taken
into consideration. Also RFE-LNW produced remarkable results on the accu-
racy performance of the independent test set, comparable to the best reported
in the international bibliography. The key to the encouraging performance of
RFE-LNW is that through the RPROP learning procedure it searches and
finally selects markers that differentiate their expression significantly between
the two classes of interest. We believe that this fact should be farther empha-
sized since expression profile plays a critical role to gene selection problem as
it is underlined by a great number of domain expert publications, a number
of which are cited in the introduction of the present study.

Based on above discussion we stress that wrapper methods will become
much more valuable tools at the hands of domain experts when they explicitly
search and finally succeed to select marker genes that significantly differentiate
their expression across the classes of interest.
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Summary. In this chapter, a detection system to support medical diagnosis and
detection of abnormal lesions by processing endoscopic images is presented. The
endoscopic images possess rich information expressed by texture. Schemes have been
developed to extract texture features from the texture spectra in the chromatic and
achromatic domains for a selected region of interest from each colour component
histogram of images acquired by the new M2A Swallow-able Capsule. The imple-
mentation of advanced neural learning-based schemes and the concept of fusion of
multiple classifiers dedicated to specific feature parameters have been also adopted
in this chapter. The test results support the feasibility of the proposed methodology.

1 Introduction

Medical diagnosis in clinical examinations highly relies upon physicians’
experience. For physicians to quickly and accurately diagnose a patient there
is a critical need in the area of employing computerised technologies to assist
in medical diagnosis and to access the related information. Computer-assisted
technology is certainly helpful for inexperienced physicians in making med-
ical diagnosis as well as for experienced physicians in supporting complex
diagnosis. Such technology has become an essential tool to help physicians
in retrieving the medical information and making decisions in medical diag-
nosis [1]. A number of medical diagnostic decision support systems (MDSS)
based on Computational Intelligent methods have been developed to assist
physicians and medical professionals. Some medical diagnosis systems based
on computational intelligence methods use expert systems (ESs) [2] or neural
networks [3].
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Endoscopy differs from traditional medical imaging modalities in several
aspects. First, Endoscopy is not based on the biophysical response of organs
to X-ray or ultrasounds, but allows a direct observation of the human internal
cavities via an optical device and a light source. Second, the Endoscopy in-
vestigation imposes a physical contact between the patient and the physician,
and the endoscopist can assess the patient complaints before the endoscopic
procedure. Finally, the patient’s discomfort during the investigation prohibits
repeated examinations and, with regard to the usual absence of storage sys-
tem, no decision element remains available at the end of the examination;
this requires that all information is gathered during a limited time period.
For more than 10 years, flexible video-endoscopes have a widespread use in
medicine and guide a variety of diagnostic and therapeutic procedures includ-
ing colonoscopy, gastroenterology and laparoscopy [4].

Conventional diagnosis of endoscopic images employs visual interpretation
of an expert physician. Since the beginning of computer technology, it becomes
necessary for visual systems to “understand a scene”, that is making its own
properties to be outstanding, by enclosing them in a general description of
an analysed environment. Computer-assisted image analysis can extract the
representative features of the images together with quantitative measurements
and thus can ease the task of objective interpretations by a physician expert in
Endoscopy. A system capable to classify image regions to normal or abnormal
will act as a second – more detailed – “eye” by processing the endoscopic video.

From the literature survey, it has been found that only a few techniques for
endoscopic image analysis have been reported and they are still undergoing
testing. In addition, most of the techniques were developed on the basis of fea-
tures in a single domain: chromatic domain or spatial domain. Applying these
techniques individually for detecting the disease patterns based on possible in-
complete and partial information may lead to inaccurate diagnosis. Krishnan
et al. [5] have been using endoscopic images to define features of the normal
and the abnormal colon. New approaches for the characterisation of colon
based on a set of quantitative parameters, extracted by the fuzzy processing
of colon images, have been used for assisting the colonoscopist in the assess-
ment of the status of patients and were used as inputs to a rule-based decision
strategy to find out whether the colon’s lumen belongs to either an abnormal
or normal category. Endoscopic images contain rich information of texture.
Therefore, the additional texture information can provide better results for
the image analysis than approaches using merely intensity information. Such
information has been used in CoLD (colorectal lesions detector) an innovative
detection system to support colorectal cancer diagnosis and detection of pre-
cancerous polyps, by processing endoscopic images or video frame sequences
acquired during colonoscopy [6]. It utilised second-order statistical features
that were calculated on the wavelet transformation of each image to discrimi-
nate amongst regions of normal or abnormal tissue. A neural network based on
the classic Back-propagation learning algorithm performed the classification
of the features.
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Intra-operative Endoscopy, although used with great success, is more
invasive and associated with a higher rate of complications. Though the
gastrointestinal (GI) endoscopic procedure has been widely used, doctors must
be skilful and experienced to reach deep sites such as the duodenum and small
intestine. The cleaning and sterilisation of these devices is still a problem
leading to the desire for disposable instruments. Standard endoscopic exami-
nations evaluate only short segments of the proximal and distal small bowel
and barium follow-through has a low sensitivity and specificity of only 10%
for detecting pathologies. Hence, endoscopic examination of the entire small
bowel has always been a diagnostic challenge. Limitations of the diagnostic
techniques in detection of the lesions located in the small bowel are mainly
due to the length of the small intestine, overlying loops and intra-peritoneal
location. This caused also the desire for autonomous instruments without the
bundles of optical fibres and tubes, which are more than the size of the in-
strument itself, the reason for the objections of the patients. The use of highly
integrated microcircuit in bioelectric data acquisition systems promises new
insights into the origin of a large variety of health problems by providing
lightweight, low-power, low-cost medical measurement devices.

At present, there is only one type of microcapsule which has been intro-
duced recently to improve the health outcome. This first swallow-able video-
capsule for the gastroenterological diagnosis has been presented by Given
Imaging, a company from Israel, and its schematic diagram is illustrated in
Fig. 1 [7]. The system consists of a small swallow-able capsule containing a
battery, a camera on a chip, a light source, and a transmitter. The camera-
capsule has a one centimetre section and a length of three centimetres so it
can be swallowed with some effort. In 24 hours, the capsule is crossing the
patient’s alimentary canal. For the purpose of this research work, endoscopic
images have been obtained using this innovative endoscopic device. They have
spatial resolution of 171× 151 pixels, a brightness resolution of 256 levels per
colour plane (8bits), and consisted of three colour planes (red, green and blue)
for a total of 24 bits per pixel.

Texture analysis is one of the most important features used in image
processing and pattern recognition. It can give information about the arrange-
ment and spatial properties of fundamental image elements. Many meth-
ods have been proposed to extract texture features, e.g. the co-occurrence
matrix [8]. The definition and extraction of quantitative parameters from

M2A by Given Imaging Ltd.M2A by Given Imaging Ltd.
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capsule endoscopic images based on texture information has been proposed.
This information was initially represented by a set of descriptive statistical
features calculated on the histogram of the original image. The implementa-
tion of an intelligent diagnostic system was based on various learning schemes
such as Radial Basis Functions [9], Adaptive Fuzzy Logic Systems [10] and
Fuzzy Inference Neural Networks [11].

The main objective of this research work which was supported by the
“IVP” research project is to design a completed diagnostic software tool for
the analysis and processing of wireless-capsule endoscopic images. The pro-
posed methodology is considered in two phases. The first implements the
extraction of image features while in the second phase an advanced neural
network is implemented/employed to perform the diagnostic task. The ex-
traction of quantitative parameters/features from endoscopic images based
on texture information in the chromatic and achromatic domain will be con-
sidered. Emphasis has to be given to the development of a reliable but also
fast pre-processing procedure. Two methodologies will be investigated. Sta-
tistical features calculated on the histogram of the original image and on its
(NTU – Texture spectrum) transformation. For the diagnostic part, the con-
cept of multiple-classifier scheme is adopted, where the fusion of the individual
outputs is realised using fuzzy integral. An intelligent classifier-scheme based
on modified Extended Normalised Radial Basis Function (ENRBF) neural
networks enhanced with split/merge issues has been also implemented while
is then compared with an Radial Basis Function (RBF) network. Finally a
user-interface is developed to be utilized by medical physicians, which among
other functionalities integrates an intelligent diagnostic sub-system.

2 Image Features Extraction

A major component in analysing images involves data reduction which is
accomplished by intelligently modifying the image from the lowest level of
pixel data into higher level representations. Texture is broadly defined as the
rate and direction of change of the chromatic properties of the image, and
could be subjectively described as fine, coarse, smooth, random, rippled, and
irregular, etc.

For this reason, we focused our attention on nine statistical measures (stan-
dard deviation, variance, skew, kurtosis, entropy, energy, inverse difference
moment, contrast, and covariance) [12].

All texture descriptors are estimated for all planes in both RGB {R
(Red), G (Green), B (Blue)} and HSV {H (Hue), S (Saturation), V (Value
of Intensity)} spaces, creating a feature vector for each descriptor Di =
(Ri,Gi,Bi,Hi,Si,Vi). Thus, a total of 54 features (9 statistical measures x
6 image planes) are then estimated. For our experiments, we have used 70
endoscopic images related to abnormal cases and 70 images related to nor-
mal ones. Figure 2 shows samples of selected images acquired using the M2A
capsule of normal and abnormal cases. Generally, the statistical measures are
estimated on histograms of the original image (1st order statistics) [12].



www.manaraa.com

An Intelligent Decision Support System in Wireless-Capsule Endoscopy 263

Fig. 2. Selected endoscopic images of normal and abnormal cases

However, the histogram of the original image carries no information
regarding relative position of the pixels in the texture. Obviously this can fail
to distinguish between textures with similar distributions of grey levels. We
therefore have to implement methods which recognise characteristic relative
positions of pixels of given intensity levels. An additional scheme is proposed
in this study to extract new texture features from the texture spectra in the
chromatic and achromatic domains, for a selected region of interest from each
colour component histogram of the endoscopic images.

2.1 NTU Transformation

The definition of texture spectrum employs the determination of the texture
unit (TU) and texture unit number (NTU) values. Texture units characterise
the local texture information for a given pixel and its neighbourhood, and the
statistics of all the texture units over the whole image reveal the global texture
aspects. Given a neighbourhood of δ × δ pixels, which are denoted by a set
containing δ×δ elements P = {P0, P1, . . . ., P(δ×δ)−1}, where P0 represents the
chromatic or achromatic (i.e. intensity) value of the central pixel and Pi{i =
1, 2, . . . , (δ× δ)− 1} is the chromatic or achromatic value of the neighbouring
pixel i, the TU = {E0, E1, . . . ., E(δ×δ)−1}, where Ei{i = 1, 2, . . . , (δ × δ)− 1}
is determined as follows:

Ei =

⎧⎪⎨
⎪⎩

0, if Pi < P0

1, if Pi = P0

2, if Pi > P0

(1)

The element Ei occupies the same position as the ith pixel. Each element
of the TU has one of three possible values; therefore the combination of all
the eight elements results in 6,561 possible TU’s in total. The texture unit
number (NTU) is the label of the texture unit and is defined using the following
equation:

NTU =
(δ×δ)−1∑

i=1

Ei × δι−1 (2)
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Where, in our case, δ = 3. The texture spectrum histogram (Hist(i)) is
obtained as the frequency distribution of all the texture units, with the ab-
scissa showing the NTU and the ordinate representing its occurrence frequency.
The texture spectra of various image components {V (Value of Intensity),
R (Red), G (Green), B (Blue), H (Hue), S (Saturation)} are obtained from
their texture unit numbers. The statistical features are then estimated on
the histograms of the NTU transformations of the chromatic and achromatic
planes of the image (R, G, B, H, S, V).

3 Features Evaluation

Recently, the concept of combining multiple classifiers has been actively
exploited for developing highly reliable “diagnostic” systems [13]. One of the
key issues of this approach is how to combine the results of the various systems
to give the best estimate of the optimal result. A straightforward approach
is to decompose the problem into manageable ones for several different sub-
systems and combine them via a gating network. The presumption is that
each classifier/sub-system is “an expert” in some local area of the feature
space. The sub-systems are local in the sense that the weights in one “expert”
are decoupled from the weights in other sub-networks. In this study, six sub-
systems have been developed, and each of them was associated with the six
planes specified in the feature extraction process (i.e. R, G, B, H, S, and V).
For each sub-system, 9 statistical features have been associated with, result-
ing thus a total 54 features space. Each sub-system was modelled with an
appropriate intelligent learning scheme. In our case, two alternative schemes
have been investigated: the modified Extended Normalised Radial Basis Func-
tion (ENRBF) neural network and the Radial Basis Function Network (RBF).
Such schemes provide a degree of certainty for each classification based on the
statistics for each plane. The outputs of each of these networks must then be
combined to produce a total output for the system as a whole as can be seen
in Fig. 3.

While a usual scheme chooses one best sub-system from amongst the set
of candidate sub-systems based on a winner-takes-all strategy, the current

Fig. 3. Proposed fusion scheme
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proposed approach runs all multiple sub-systems with an appropriate collec-
tive decision strategy. The aim in this study is to incorporate information
from each feature space so that decisions are based on the whole input space.
The simplest method is to take the average output from each classifier as the
system output. This does not take into account the objective evidence sup-
plied by each of the feature classifiers and confidence which we have in that
classifiers results. The fuzzy integral is an alternative method that claims to
resolve both of these issues by combining evidence of a classification with the
systems expectation of the importance of that evidence. The fuzzy integral
introduced by Sugeno and the fuzzy measures from Yager are very useful in
combining information. A fuzzy measure gλ is a set function such that:

• The fuzzy measure of an empty set is equal to zero – g(0) = 0
• The fuzzy measure of an entire set Qis equal to one – g(Q) = 1
• The fuzzy measure of set Ais less than or equal to that of set B if A is a

subset of B − g(A) ≤ g(B) if A ⊂ B

This function can be interpreted as finding the maximal grade of agreement
between networks’ outputs and their fuzzy measures for a particular class. If
the following additional property is also satisfied, the fuzzy measure is referred
to as a gλ–fuzzy measure.

∀A,B ⊂ Q and A ∩B = 0, g(A ∪B) = g(A) + g(B) + λg(A)g(B),
λ ∈ (−1,∞) (3)

where the λ measure can be given by solving the following non-linear equation

λ + 1 =
n∏

i=1

(
1 + λgi

)
λ > −1 (4)

When combining multiple NNs, let gi denote the fuzzy measure of network i.
These measures can be interpreted as quantifying how well a network properly
classified the samples/patterns. They must be known and can be determined
in different ways i.e., the fuzzy measure of a network could equal the ratio of
correctly classified patterns during supervised training over the total number
of patterns being classified. In this research, each network’s fuzzy measure
equalled 1−Ki, where Ki was network ith overall testing kappa value [14].

A pattern is being classified to one of m possible output classes, cj for
j = 1, . . . ., m. The outputs of n different networks are being combined,
where NNi denotes the ith network. First, these networks must be renum-
bered/rearranged such that their a posteriori class probabilities are in de-
scending order of magnitude for each output class j,

y1(cj) ≥ y2(cj) ≥ . . . . ≥ yn(cj)

where yi(cj) is the ith network’s a posteriori class j probability. Next, each
network/set of networks’ gλ – fuzzy measure is computed for every output
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class j and is denoted by gj(Ai). Ai = {NN1, NN2, . . . , NNi} is the set of
the first i networks ordered correspondingly to class j′s associated a posteriori
probabilities. These values can then be computed using the following recursive
method,

• gj(A1) = gj({NN1}) = g1

• gj(Ai) = gj({NN1, . . . , NNi}) = gi + g(Ai−1) + λgig(Ai−1) for 1 < i < n
• gj(An) = gj({NN1, . . . , NNn}) = 1

Finally, the fuzzy integral for each class j is defined as [15],

maxn
i=1[min[yi(cj), gj(Ai)]] (5)

The class with the largest fuzzy integral value is then chosen as the output
class to which the pattern is classified. Equation 5 summarises combining
multiple NNs using a fuzzy integral approach.

maxclass

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

maxnetwork

⎡
⎢⎢⎢⎣

min[y1(c1), g1(A1)]
min[y2(c1), g1(A2)]

. . . . . . . . . . . . .

min[yn(c1), g1(An)]

⎤
⎥⎥⎥⎦

maxnetwork

⎡
⎢⎢⎢⎣

min[y1(c2), g2(A1)]
min[y2(c2), g2(A2)]

. . . . . . . . . . . . .

min[yn(c2), g2(An)]

⎤
⎥⎥⎥⎦

. . . . . . . . . . . . . . . . . . . . . . . . ..

maxnetwork

⎡
⎢⎢⎢⎣

min[y1(cm), gm(A1)]
min[y2(cm), gm(A2)]

. . . . . . . . . . . . .

min[yn(cm), gm(An)]

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

3.1 Extended Normalised RBF Network

The first classification scheme utilised here is a modified version of the Ex-
tended Normalised Radial Basis Function Network (ENRBF) [16], which
utilises a series of linear models instead of the linear combiner in an RBF
network. The scheme is illustrated in Fig. 4. We propose a supervised train-
ing method for this scheme that is fully supervised and self organising in terms
of structure. The method incorporates training techniques from Bayesian
Ying-Yang (BYY) training which treats the problem of optimisation as one
of maximising the entropy between the original non-parametric data distrib-
ution based on Kernel estimates or user specified values and the parametric
distributions represented by the network. This is achieved through the deriva-
tion of a series of Expectation Maximisation (EM) update equations using a
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Fig. 4. ENRBF scheme

series of entropy functions as the Q function or log-likelihood function. The
ENRBF network can be represented by the following equations.

E (z|x,Θ) =

K∑
j=1

(
WT

j x + cj

)
p (x|j, θj)

K∑
j=1

p (x|j, θj)
(7)

Where z is the output of the network z ∈ Z, x is an input vector x ∈ X, Θ =
[W, c, θ] are the network parameters and θ = [m,Σ] are the parameters of the
Gaussian activation functions given by:

p (x|j, θj) = exp
{
− 1

2 (x−mj) Σ−1
j (x−mj)

}
(8)

The BYY method attempts to maximise the degree of agreement between
the expected value of z from the network and the true value of z from the
training data. It is guaranteed to lead to a local optimum and unlike the
original EM algorithm for learning the parameters of Gaussian functions this
method encourages coordination between the input and output domains. Like
the EM algorithm this method is also very fast in terms of the number of
iterations needed for the parameters to converge.

However, as BYY is an EM based technique it is still susceptible to locally
maximal values. The Split and Merge EM (SMEM) concept for Gaussian
Mixture Models (GMM) proposed initially by Ueda, has been applied to the
ENRBF scheme. The original SMEM algorithm is able to move neurons from
over populated areas of the problem domain to underrepresented areas by
merging the over populated neurons and splitting the under-populated. The
use of Eigenvectors to split along the axis of maximum divergence instead of
randomly as in original SMEM has been proposed recently. The SMEM algo-
rithm suffers from the fact that before terminating all possible combinations
of Split and Merge operations must be examined. Although many options can
be discounted, the training time still increases exponentially with network
size and again suffers from problems inherent with k-means and basic EM in
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that it is essentially unsupervised. In this work we incorporate the supervised
nature of BYY training with improved statistical criteria for determining the
neurons which poorly fit their local areas of the problem domain.

3.2 Radial Basis Function Networks

MLP network is probably the most widely used neural network paradigm.
One disadvantage of this model is the difficulty in classifying a previously
unknown pattern that is not classified to any of the prototypes in the training
set. RBF networks train rapidly, usually orders of magnitude faster than the
classic back-propagation neural networks, while exhibiting none of its training
pathologies such as paralysis or local minima problems. An RBF is a function
which has in-built distance criterion with respect to a centre. Such a system
consists of three layers (input, hidden, output). The activation of a hidden
neuron is determined in two steps: The first is computing the distance (usually
by using the Euclidean norm) between the input vector and a centre ci that
represents the ith hidden neuron. Second, a function h that is usually bell-
shaped is applied, using the obtained distance to get the final activation of
the hidden neuron. In this case the Gaussian function G(x)

G(x) = exp
(
−x2

σ2

)
(9)

was used. The parameter σ is called unit width and is determined using
the heuristic rule “global first nearest-neighbour”. It uses the uniform average
width for all units using the Euclidean distance in the input space between
each unit m and its nearest neighbour n. All the widths in the network are
fixed to the same value σ and this results in a simpler training strategy. The
activation of a neuron in the output layer is determined by a linear combina-
tion of the fixed non-linear basis functions, i.e.

F ∗(x) =
M∑
i=1

wiφi(x) (10)

where φi(x) = G(‖x− ci‖) and wi are the adjustable weights that link the
output nodes with the appropriate hidden neurons. These weights in the out-
put layer can then be learnt using the least-squares method. The present study
adopts a systematic approach to the problem of centre selection. Because a
fixed centre corresponds to a given regressor in a linear regression model, the
selection of RBF centres can be regarded as a problem of subset selection. The
orthogonal least squares (OLS) method can be employed as a forward selec-
tion procedure that constructs RBF networks in a rational way. The algorithm
chooses appropriate RBF centres one by one from training data points until a
satisfactory network is obtained. Each selected centre minimises the increment
to the explained variance of the desired output, and so ill-conditioning prob-
lems occurring frequently in random selection of centres can automatically be
avoided.



www.manaraa.com

An Intelligent Decision Support System in Wireless-Capsule Endoscopy 269

4 Results

The proposed approaches were evaluated using 140 clinically obtained endo-
scopic M2A images. For the present analysis, two decision-classes are con-
sidered: abnormal and normal. Seventy images (35 abnormal and 35 normal)
were used for the training and the remaining ones (35 abnormal and 35 nor-
mal) were used for testing. The extraction of quantitative parameters from
these endoscopic images is based on texture information. Initially, this infor-
mation is represented by a set of descriptive statistical features calculated on
the histogram of the original image. Both types of networks (i.e. ENRBF and
RBF) are incorporated into a multiple classifier scheme, where the structure
of each individual (for R, G, B, H, S, and V planes) classifier is composed of
9 input nodes (i.e. nine statistical features) and 2 output nodes. In a second
stage, the nine statistical measures for each individual image component are
then calculated though the related texture spectra after applying the (NTU)
transformation.

4.1 Performance of Histograms-Based Features

The multiple-classifier scheme using the ENRBF network has been trained on
the six feature spaces. The network trained on the R feature space and it then
achieved an accuracy of 94.28% on the testing data incorrectly classifying 2 of
the normal images as abnormal and 2 abnormal as normal ones. The network
trained on the G feature space misclassified 2 normal images as abnormal but
not the same ones as the R space. The remaining 3 images were misclassified
as normal ones. The B feature space achieved an accuracy of 94.28% on the
testing data with 4 misclassifications, i.e. 3 abnormal as normal ones and the
remaining one image as abnormal ones. The network trained on the H feature
space achieved 91.43% accuracy on the testing data. The network trained on
the S feature space achieved an accuracy of only 88.57% on the testing data.
Finally, the network for the V feature space misclassified 2 normal cases as
abnormal and 2 abnormal as normal ones, giving it an accuracy of 94.28%
on the testing data. The fuzzy integral (FI) concept has been used here to
combine the results from each sub-network and the overall system misclassified
1 normal cases as abnormal and 3 abnormal as normal ones, giving the system
an overall accuracy of 94.28%. These results are illustrated in Fig. 5, while
Table 1 presents the performance of individual components. It can be shown
that in general the confidence levels for each correct classification is above 0.6.

In a similar way, a multi-classifier consisting of RBF networks with 9 input
nodes and 2 output nodes was trained on each of the six feature spaces. The
network trained on the R feature space and classified incorrectly 2 of the nor-
mal images as abnormal and 4 abnormal as normal ones. The network trained
on the G feature space misclassified 3 normal images as abnormal but not the
same ones as the R space. The remaining 2 images were misclassified as nor-
mal ones. The B feature space has resulted 8 misclassifications, i.e. 5 abnormal
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Fig. 5. Histogram-based performance

Table 1. Performances of ENRBF

ENRBF Accuracy (70 testing patterns)

Modules Histogram-based NTU -based
R 94.28% (4 mistakes) 92.85% (5 mistakes)
G 92.85% (5 mistakes) 97.14% (2 mistakes)
B 94.28% (4 mistakes) 95.71% (3 mistakes)
H 91.43% (6 mistakes) 94.28% (4 mistakes)
S 88.57% (8 mistakes) 91.43% (6 mistakes)
V 94.28% (4 mistakes) 97.14% (2 mistakes)
Overall 94.28% (4 mistakes) 95.71% (3 mistakes)

Table 2. Performances of RBF

RBF accuracy (70 testing patterns)

Modules Histogram-based NTU -based
R 91.42% (6 mistakes) 92.85% (5 mistakes)
G 92.85% (5 mistakes) 95.71% (3 mistakes)
B 88.57% (8 mistakes) 91.43% (6 mistakes)
H 90% (7 mistakes) 92.85% (5 mistakes)
S 85.71% (10 mistakes) 90.00% (7 mistakes)
V 94.28% (4 mistakes) 94.28% (4 mistakes)
Overall 88.57% (8 mistakes) 91.43% (6 mistakes)

as normal ones and the remaining 3 images as abnormal ones. The network
trained on the H and S feature spaces achieved 90% and 85.71% accuracy
respectively on the testing data. Finally, the network for the V feature space
misclassified 3 normal cases as abnormal and one abnormal as normal one.
Using the fuzzy integral (FI) concept, the overall system achieved an accuracy
of 88.57%. Table 2 presents the performance of individual components. The
confidence levels for each correct classification were above 0.50.



www.manaraa.com

An Intelligent Decision Support System in Wireless-Capsule Endoscopy 271

4.2 Performance of NTU-Based Features

In the NTU-based extraction process, the texture spectrum of the six compo-
nents (R, G, B, H, S, V) have been obtained from the texture unit numbers,
and the same nine statistical measures have been used in order to extract new
features from each textures spectrum. A multi-classifier consisting of ENRBF
networks with 9 input nodes and 2 output nodes was again trained on each
of the six feature spaces. The NTU transformation of the original histogram
has produced a slight but unambiguous improvement in the diagnostic per-
formance of the multi-classifier scheme. Table 1 illustrates the performances
of the network in the individual components.

The ENRBF network trained on the R feature space and it then achieved
an accuracy of 92.85% on the testing data incorrectly classifying 3 of the
normal images as abnormal and 2 abnormal as normal ones. The network
trained on the G feature space misclassified 2 normal images as abnormal but
not the same ones as the R space. The B feature space achieved an accuracy of
95.71% on the testing data with 3 misclassifications, i.e. 2 abnormal as normal
ones and the remaining one image as abnormal one. The network trained
on the H feature space achieved 94.28% accuracy on the testing data. The
network trained on the S feature space achieved an accuracy of only 91.43%
on the testing data. Finally, the network for the V feature space misclassified 1
normal case as abnormal and 1 abnormal as normal one, giving it an accuracy
of 97.14% on the testing data. The fuzzy integral (FI) concept has been used
here to combine the results from each sub-network and the overall system
provided an accuracy of 95.71%. More specifically, 1 normal case as abnormal
and 2 abnormal as normal ones provide us a good indication of a “healthy”
diagnostic performance. However the level of confidence in this case was slight
less than the previous case (i.e. the histogram), that is 0.54 as shown in Fig. 6.

Similarly for the RBF case, the FI concept has been used to combine the
results from each sub-network and the overall system misclassified 3 normal
cases as abnormal and 3 abnormal as normal ones, giving the system an overall
accuracy of 91.43%, despite the fact that RBF was characterised by a very fast
training process. Table 2 presents the performance of individual components.
The confidence levels for each correct classification were above 0.55.
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5 User-to-Computer Interface

There are significant differences between the requirements imposed on medical
equipment, depending on the class of application. Various classes have differ-
ent requirements regarding safety, reliability, cost and precision. The trend
toward storing, distributing, and viewing medical images in digital form is
being fuelled by two powerful forces: changes in the economic structure of the
health care system and rapidly evolving technological developments.

The developed User-Interface has been designed in such a way that pro-
vides to the physician a simple and efficient tool for endoscopic imaging [17].
The physician can watch the video sequence in various speeds, select and save
individual images of interest, zoom and rotate selected images as well as keep-
ing notes on the patient history editor (bottom left side). This is illustrated
in Fig. 7.

This software release includes a range of new features and enhancements
for workflow efficiency and user-friendliness. It integrates Patient Management
Capabilities with Diagnostic Tools. In general the benefits of the proposed
Management Tool are:

Automatic diagnostic tools

• Intelligent algorithms for diagnosis of suspected cases

Productive video/individual image viewing

• Zoom, rotate
• Video playback control
• Adjustable video speed
• Video scroll bar

Fig. 7. Main input screen
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Efficient workflow

• Patient record
• Automated video diagnosis for work load minimisation
• Storage of patient files (history record and snapshots)

Capsule control tool

• Viewing angle
• Image quality

The physician can watch the video sequence in various speeds, select and save
individual images of interest, zoom and rotate selected images. In addition,
the user can add/modify at any time the text on the “patient details” window
using the copy, cut, paste, delete and undo buttons that are provided on the
right side or alternatively the Edit Menu of the File Menu. An Intelligent
algorithm already developed in MATLAB Environment has been integrated
into this management scheme. The algorithm can identify possible suspicious
areas. Intelligent diagnosis can be performed in two modes: video diagnosis
and snapshot diagnosis:

• The video diagnosis button performs diagnosis throughout the whole video
sequence and returns the results after the end on a text file on the PC.

• The snapshot diagnosis performs diagnosis only on the selected snapshot
images and returns the results again on a text file on the PC.

During an endoscopic procedure the user has control over the viewing angle
of the capsule as well as the image quality of the being acquired video. By
changing the position of the “Viewing angle” scrollbar of the Capsule control
window, he can alternate the viewing angle of the image sensor (left-right). By
changing the position of the “Image quality” scrollbar of the Capsule control
window, the image quality of the capsule can vary from the two extremes: low-
est resolution (highest frame rate) and highest resolution (lowest frame rate).

6 Conclusions

An integrated approach on extracting texture features from wireless capsule
endoscopic images has been developed. Statistical features based on texture
are important features, and were able to distinguish the normal and abnormal
status in the selected clinical cases. The multiple classifier approach used in
this study with the inclusion of advanced neural network algorithms provided
encouraging results. Two approaches on extracting statistical features from
endoscopic images using the M2A Given Imaging capsule have been devel-
oped. In addition to the histogram-based texture spectrum, an alternative
approach of obtaining those quantitative parameters from the texture spec-
tra is proposed both in the chromatic and achromatic domains of the image
by calculating the texture unit numbers (NTU) over the histogram spectrum.
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The developed intelligent diagnostic system was integrated on a user-interface
environment. This user-interface was developed under the framework of the
“Intracorporeal VideoProbe – IVP” European research project. This software
release includes a range of new features and enhancements for workflow effi-
ciency and user-friendliness. It also integrates Patient Management Capabili-
ties with Powerful Diagnostic Tools.
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Summary. Many distributed heterogeneous systems interoperate and exchange in-
formation between them. Currently, most systems are described in terms of on-
tologies. When ontologies are distributed, the problem of finding related concepts
between them arises. This problem is undertaken by a process which defines rules
to relate relevant parts of different ontologies, called “Ontology Alignment.” In lit-
erature, most of the methodologies proposed to reach the ontology alignment are
semi automatic or directly conducted by hand. In the present paper, we propose
an automatic and dynamic technique for aligning ontologies. Our main interest is
focused on ontologies describing services provided by systems. In fact, the notion
of service is a key one in the description and in the functioning of distributed sys-
tems. Based on a teleological assumption, services are related to goals through the
paradigm ‘Service as goal achievement’, through the use of ontologies of services,
or precisely goals. These ontologies are called “Goal Ontologies.” So, in this study
we investigate an approach where the alignment of ontologies provides full semantic
integration between distributed goal ontologies in the engineering domain, based on
the Barwise and Seligman Information Flow (noted IF) model.

1 Introduction

In distributed environments, dynamic interaction, communication, and infor-
mation exchange are highly required. Generally, systems are heterogeneous,
so they need to understand what they communicate. This is known by the
“Semantic nteroperability,” which present a big challenge in the Artificial In-
telligence area. The design of distributed systems is an important step. Recent
works suggest to describe systems in terms of their goals, their functions and
their physical components [3, 8]. Actually, much attention has been paid on
the design of the automated control systems [2,22], where functions and goals
are fundamental to the understanding of complex systems. A functional rep-
resentation of systems consists in the description of the functionality of its
components (or (sub-)systems) and the relationship between them. An effi-
cient and promising way to implement this is through the use of Ontologies,

N. Mellal et al.: Formal Method for Aligning Goal Ontologies, Studies in Computational

Intelligence (SCI) 109, 279–289 (2008)
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an explicit specification of conceptualization [9, 11]. In [20], authors have de-
noted a functionality of a component as a verb + noun style for representing
the components activities (or actions) and its operands which needs an on-
tological schema for functional knowledge which specifies not only the data
structure but also the conceptual viewpoint for capturing the target world.
Following this approach, we associate with each goal some possible actions (at
least one) in order to fulfill the intended goal [12,21].

Usually, in distributed systems, the increasing number of goals, and thus
possible combinations, requires the development of dynamic and automatic
techniques for their composition and fusion. Current solutions are limited and
are primarily static and manual. This needs the development of dynamic and
automatic methodologies.

After a careful look at the different works and theories related to these
topics, such as [16], their approach mainly builds on the IF-Map method
to map ontologies in the domain of computer science departments from five
UK universities. Their method is also complemented by harvesting mecha-
nisms for acquiring ontologies, translators for processing different ontology
representation formalisms and APIs for web enabled access of the generated
mappings. In [14, 16, 27], first-order model theory are investigated to formal-
ize and automatize the issues arising with semantic interoperability for which
they focused on particular understandings of semantics.

To this aim, our proposed work extends the methodology proposed in [27]
for communicating conceptual models (i.e., goal ontologies in the engineering
domain) within distributed systems.

Multi Agent Systems (MAS) have been the subject of massive amounts of
research in recent years for large scale, complex systems, distributed systems,
heterogeneous systems, in open environments and adaptable systems. Software
agents can be able to discover, invoke, compose, and monitor systems resources
offering particular services and having particular properties, and can be able to
do so with a high degree of automation if desired. It seems to be a promising
candidate to support the process of goal ontologies alignment. Where the
software agents represent a distributed system. For a given goal, each agent
manipulates the possible goal ontologies in its system.

In the present paper, we introduce in section two the notion of goal and we
define what goal ontology is in our context? In Sect. 3, we give some precise
definitions of the IF model we use in our methodology. Finally, in Sect. 4,
we present our methodology for aligning goal ontologies illustrating it by an
algorithm.

2 Goal Ontologies

Reasoning with goal models has become an attractive and challenging topic
over the past decade. The proposed model is teleological, which means that we
can conceive software goals acting on data structures as determined by ends
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or hardware goals. Motivated by the teleological reasoning, any functional
concept is described by a goal definition which is related to the intentional
aspect of function [22] and some possible actions (at least one) in order to
fulfill the intended goal [7, 12, 21]. The teleological basis introduced in [4–6]
relates the structure and behavior of the designed system to its goals. The
goal modeling requires to describe a goal representation (i.e., a conceptual
structure), and to define how these concepts are related.

2.1 Goal Notion

In order to give a formal structure of a goal, we describe each service as a
tuple:

(Actionverb, {Property,Object}),

where the action verb acts on the object’s property. We distinguish two classes
of objects: “Object Type” and “Object Token.” Object types describe entities
by their major characteristic (for example Person represents an object type),
where, object tokens are specified by their identity (for example, Omar is a
person). We define the couple {Property, Object}, as a “Context.” When the
object is an object type, the context is called “Context Type,” and when it is
an object token, the context is called “Context Token.” We define each notion
in next paragraphs.

Definition 1. Given P , a finite set of properties, Ψ a finite set of object types.
A context type is a tuple:

ξi = (p, ψ1, ψ2, ..ψi) (1)

where p ∈ P , denotes its property, and {ψ1, ψ2, . . . ψi} ⊆ Ψ , a set of object
type.

A similar definition holds for contexts tokens replacing object types by
object tokens.

Definition 2. A goal type is a pair (A,Ξ), where A is an action symbol and
Ξ is a non-empty set of context types.

A similar definition holds for goal tokens replacing context types by context
tokens.

2.2 Goal Ontology

Links between goals are functional. These links reflect the causal dependencies
between goals. In general, goals and their links are described in a hierarchy.
The hierarchy illustrates the functional influence between goals, where their
functional inclusion also referred to as functional part-of and denoted �⊆�.
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Since we have to relate goal hierarchies through information channels, their on-
tological definition must include concepts together with the basic ontological
axioms [28]. The ontology includes goal types as concepts and the functional
part-of ordering relation as relations between goals.

Definition 3. A goal type “γi” influences functionally “γj” iff the only way to
achieve γj is to have already achieved γi, with the notation:

γi � γj , (2)

Therefore, we define a goal ontology as:

Definition 4. A goal ontology O is described by the following tuple:

O = (Γ,�Γ ) (3)

where Γ is a finite set of goal types, �Γ is a partial order on Γ .

We introduce in next section the most important definition in the IF model.

3 IF Model

3.1 IF Classification

Definition 5. An IF Classification A is a triple < tok(A), typ(A), | = A >,
which consists of:

1. a set tok(A) of objects to be classified known as the instances or particulars
of A that carry information,

2. a set typ(A) of objects used to classify the instances, the types of A, and
3. a binary classification relation | = A between tok(A) and typ(A) that tells

one which tokens are classified as being of which types.

The meaning of the notation a | = Aα is “instance a is of type α in A.”
IF classifications are related through infomorphisms. Infomorphisms are the
links between classifications.

3.2 Infomorphism

Definition 6. Let A and B be IF classifications. An Infomorphism denoted
f =< f̂, f̌ >: A � B is a contravariant pair of functions f̂ : typ(A) → typ(B)
and f̌ : tok(B) → tok(A) which satisfies the fundamental property:

f̌(b)| = Aα iff b| = B f̂(α) for each α ∈ typ(A) and b ∈ tok(b)
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Regularities in a distributed system are expressed with IF theories and IF
logics. In distributed system, IF-theories can be seen as an idealized version
of the scientific laws supported by a given system.

Let A be a classification. A token a ∈ tok(A) satisfies the constraint Γ  ∆
where (Γ,∆) are subsets of typ(A), if a is of some types in ∆ whenever a
is of every type in Γ. If every token of A is constrained by (Γ,∆), we have
obviously Γ  A ∆ and < typ(A), A> is the theory generated by A.

A theory T is said regular if for all α ∈ typ(T) and for arbitrary subsets
Γ, ∆, Γ′, ∆′, Σ′ of typ(T ), the following properties hold:

– The Identity: α  Tψα
– The Weakening: if Γ  Tψ∆ then Γ, Γ′  ∆, ∆′

– The Global cut: if Γ, Γ′  ∆, ∆′ for any partition1 (Γ′, ∆′) of Σ′, then,
Γ  Tψψ∆, for all if Γ, ∆  Tψtyp(T )

3.3 Local Logic

Definition 8. A local logic L = <tok(L), typ(L), | = L, L, NL> consists of
a regular

IF theory th(L) = <typ(L), L>, an IF classification cla(L)
= <tok(L), typ(L), | = L>

and a subset NL ⊆ tok(L) of normal tokens which satisfy all the constraints
of th(L).

A token a ∈ tok(L) is constrained by th(L). Given a constraint (Γ,∆) of
th(L), whenever a is of all types in Γ, then a is of some type in ∆. An IF logic
L is sound if NL = tok(L). In this paper, we restrict the classification relation
to normal instances, limiting ourselves to sound logics. This assumption is
required to enable ontology sharing or ontology matching [15,16]. In summary,
each component of a distributed system is described with a sound local logic
integrating a classification and its associated theory.

L = <tok(L), typ(L), | = L, L, NL> (4)

Let us introduce the distributed IF structures, which base on the IF channel.
IF channel models the information flow between IF classifications. The local
logic is the “what” of IF, the channel is the “why”

3.4 IF Channel

Definition 9. An IF channel consists of two classifications A1 and A2 con-
nected through a core classification C by means of two infomorphisms f1
and f2.
1 A partition of Σ′ is a pair (Γ′, ψ∆′) of subsets Σ′, such that Γ′ ∪ ∆′ = Σ′ and

Γ′ ∩ ∆′ = ©/
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C

A1+ A2 A2
A1

F

Fig. 1. The IF channel

Since local logics are inclusive concepts combining the concepts of classi-
fication and theory, they capture a more general knowledge than single clas-
sifications. Therefore there is a need to consider distributed IF logics of IF
channels.

Definition 10. Given a binary channel C = {f1 : A1 � C, f2 : A2 � C}
with a logic L on the core classification C, the distributed logic DLogC(L) of
C generated by L is such as:

DLogC(L) = F−1[L] (5)

The local logic on the sum A1 + A2 which represents the reasoning about
relations among the components is also referred as the distributed logic of
C generated by L while F denotes the infomorphism F : (A1 + A2) � C.
σ1 and σ2 are also infomorphisms, where, σ1: A1 � (A1 + A2) and σ2 :
A2 � (A1 + A2), (see Fig. 1).

4 Aligning Distributed Goal Ontologies

4.1 Scenario of the Alignment

Considering a distributed system of goal ontologies, semantic interoperability
turns out to find relationships (equivalence or subsumption) between concepts
(e.g., goal types) which belong to different ontologies. This process is known
as an ontology alignment problem. In the present work, the alignment is used
to find the correspondences between goal ontologies. As a crucial topic, infor-
mation exchange between functional hierarchies must occur in a semantically
sound manner. Major works stem from the idea that a classification of in-
formation (types versus tokens) must exist in each of the components of a
distributed system [1,6,18,19]. Of particular relevance to this aim is the work
in Information Flow (IF). Therefore, we follow the IF mathematical model
which describes the information flow in a distributed system. A process de-
scribed in [17], uses IF classifications where the classification relation is in
fact a subsumption relation. We have extended this work to goal hierarchies
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where the classification relation expresses the functional dependency. Goal
ontologies alignment is a process which describes how one or more goals of
the ontology can be aligned to goal(s) of other ontologie(s) in a sound and au-
tomatic way, without altering the original ontologies. Such a process must not
be considered as a simple pattern matching process, but rather an intentional
alignment process since the resulting goal dependencies must respect the sum
of the local logics both on the syntactic and the semantic level. Local logics
express physical constraints through Gentzen sequents. Therefore there is a
need to consider distributed IF logics of IF channels. The semantic integration
of goal types from separate systems is achieved through a process including
several steps [23]:

1. The description of each system by its possible goal ontologies.
2. The identification of the local logics of each system. To do this, IF classifi-

cations, IF theories have to be defined. Classifications of systems represent
their goals, we associate goal types as Types of classification and context
tokens as Tokens. The IF theories describe how different types from dif-
ferent systems are logically related to each other.

3. The building of the Information Channel between these systems.
4. The definition of distributed logic which permits the connection between

candidate systems. Given the logic Log(C) = L on the core C, the distrib-
uted logic DLog(C) on the sum of goal hierarchies is the inverse image of
Log(C) on this sum. The logic is guaranteed to be sound on those tokens
of the sum that are sequences of projections of a normal token of the logic
in C. We obtain sequents like relating goal(s) on remote systems to the
local goal(s). The set of these couples constitute the IF theory on the core
of the channel. From here it is straightforward to extend goal dependencies
to dependencies between higher-level goal, and finally between distributed
services.

4.2 Agent Specification

Multi-Agents Systems (MAS) models are considered as programming para-
digms as well as implementation models for complex information processing
systems [29]. More precisely, in distributed systems, each agent is able to lo-
cally process data and exchange only high-level information with other parts.
Since an agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors [26], we
exploit the high-level and dynamic nature of multi-agent interactions which
is appropriate to distributed systems. The IF-based mechanism of searching
for goal dependencies is typically that of distributed problem solving systems,
where the component agents are explicitly designed to cooperatively achieve
a given goal.

In [1], authors have described an approach to ontology negotiation between
agents supporting intelligent information management. They have developed
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a protocol that allows agents to discover ontology conflicts and then, though
incremental interpretation, clarification, and explanation, establish a common
basis for communicating with each other. Our aim is not to extend this work,
but to clarify the idea of using intelligent agents to facilitate the automatic
alignment of goal ontologies. In this work we are mainly interested in the
development of deliberative agents to implement adaptive systems in open
and distributed environments. Deliberative agents are usually based on a BDI
model [25], which considers agents as having certain mental attitudes, Beliefs,
Desires, and Intentions (BDI). An agents beliefs correspond to information the
agent has about the world (e.g., variables, facts, . . . ). An agents desires intu-
itively correspond to the goals allocated to it. An agents intentions represent
desires (i.e., goals) that it has committed to achieving. A BDI architecture is
intuitive and it is relatively simple to identify the process of decision-making
and how to perform it. Furthermore, the notions of belief, desire and intention
are easy to understand. Its main drawback lies in finding a mechanism that
permits its efficient implementation. Most approaches use modal logic such
as extensions to the branching time logic CTL∗, for the formalization and
construction of such agents, but either they are not always completely axiom-
atized or they are not computationally efficient [13,24,25]. The problem lies in
the great distance between the powerful logic for BDI systems and practical
systems.

We have specified our proposed process using software agents. Each one
is responsible of the achieving of goals in its system. The communication and
the cooperation between agents may be reached by the use of IF model. For
this aim, we propose the algorithm bellow.

4.3 Algorithm � Alignment of goal ontologies �
Input: A Goal G to achieve in System (0).
Output: G achieved.

BEGIN
(1): Agent0 analysis the goal ontology of G; It analysis

the ontology according to the context types of its
goals.

if the context types of the goals in ontology are local,
then G is achievable locally;

else
(2): Agent0 broadcasts a request to the remote

agents asking goals containing the context
types remaining in the local ontology;
if no agent answers; then
G is aborted;

else
(3): Agent0 identifies the candidates

agents (Agents K) and analyses their
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answers (distributed goal ontologies
candidates);

(4): Agent0 specifies goal-ontologies by
means of IF classifications. It
builds classifications of local and
remote goal ontologies. It generates
their IF theories;

(5): Agent0 builds the information
channel, by generating the core
classification between the requesting
classification and the potential
candidate classifications and
generates the infomorphisms
connecting them;

(6): Agent0 generates the IF theory on the
core of the channel and deduces the
IF logic L(Core) on the core.

(7): Agent0 computes the inverse image of
L(Core) which presents the
distributed logic on the sum of the
classifications;

(8): From L(Core), Agent0 selects the
appropriate goal according to
semantic constraints;

end-if
end-if

END

In this part, we extend our approach to be applied in an multi-agents
system. Each agent represents a system and communicates by exchanging
information with other distant agents. For a given goal G to be achieved in
system(0). Agent0 (which represents system 0) is responsible of achieving this
goal. The algorithm complexity depends on the significant phases. In [23] the
goal complexity is reduced to O(n2 ∗ 2p), n is the number of goal types, p the
number of context types.

5 Conclusion

Since systems need to communicate and exchange services and information,
ontologies present a good way in the description of these systems, but they
are not sufficient to achieve the interaction between them in a sound manner.
Formal and mathematical theories are highly required. In this paper, we have
presented a formal approach for automatic and dynamic alignment of goal
ontologies. Our approach is based on the mathematical model (IF model). It is
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well detailed in [23]. The alignment of goal ontologies expresses the functional
dependencies between goals. The process of alignment proposed in this paper
is specified by software agent, since it treats a distributed system.

Our future work is directed to the implementation of the proposed method-
ology. We plan to use the Cognitive Agent Architecture (Cougaar) with the
mechanisms for building distributed agent systems [10], because it provides
a rich variety of common services to simplify agent development and deploy-
ment.
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Summary. With corporations collecting more and more data covering virtually
every aspect of their business, turning data into information and information into
action is paramount for success. The current state of the business needs to be re-
ported and based on predictions problems or opportunities can be spotted early and
understood, such that actions can be pro-actively taken accordingly. We propose an
architecture for a smart data analysis service that automatically builds data analysis
models based on high-level descriptions of analysis goals and solution requirements,
wraps the models into executable modules for a straightforward integration with
operational systems, monitors the performance of the operational system and trig-
gers the generation of a new model if the performance deteriorates or the solution
requirements change.

1 Introduction

Corporations are collecting more and more data covering virtually every as-
pect of their business. The data concerns internal processes, suppliers, cus-
tomers and probably competitors. Information derived from data can be used
to improve and control internal processes, to understand, serve and target
customers better. The first hurdle is quite often the large number of differ-
ent systems and data sources in organisations that hinder a single view onto
the entire business. Secondly, modern data analysis approaches are required
to turn raw data into useful information. In the following, we will use the
term data analysis as generic term for traditional, statistical data analysis
and modern machine learning techniques likewise. The term Intelligent Data
Analysis (IDA) can sometimes be found in literature basically meaning the
same thing.

Finally, gained information will be used to make business decisions. An
example is fraud detection. Based on customer data, models can be learned
which are able to detect fraudulent transactions or at least mark transactions
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with a high fraud propensity. These cases can then automatically be passed
on to an advisor who checks the customer records and the latest transaction
again and acts upon it.

Information gained from data will not only to be used to understand the
business but also integrated with operational systems as indicated in the
above example of fraud detection. Obviously, the information contained in
data changes over time, which is basically a reflection of changes in the mar-
ket or of internal processes. As a result, an analytics module like a fraud
detector needs to be adapted on a regular basis, which is still very much a
manual procedure.

The chapter describes a smart service based on our data analysis plat-
form SPIDA (Soft Computing Platform for Intelligent Data Analysis) [1] that
tackles the following problems:

1. Monitoring the performance of an operational system and trigger the gen-
eration of a new analytics module in case of performance deterioration

2. Automatic creation of a data analysis model based on user requirements
3. Wrapping the model into an executable module for integration with op-

erational systems

The objective of our system is to keep the performance of the operational
system at a high level at all times and to achieve that with no or as little human
interaction as possible. Hereby, an important role is played by an intelligent
wizard for the creation of data analysis models. It can create data analysis
models based on given high-level user requirements. Embedded into the smart
data analysis service the wizard is flexible enough to choose any analysis
algorithm that meets the user requirements. Normally, such flexibility can only
be achieved by human analysts. As an easier but less flexible alternative, some
systems stick to the same algorithm and only change some model parameters
in order to adapt to changes.

The chapter is organised as follows. We first give an overview of different
application scenarios for data analysis tools or services and from those derive a
generic architecture for a smart data analysis service. Afterwards, the wizard
for the automatic creation of analysis processes is explained, followed by our
approach to wrapping such a process into a piece of software that can be
executed by an operational system.

2 Application Scenarios

In an industrial context, intelligent data analysis is normally applied in two
different ways, analysts performing ad-hoc analysis on given data sets and
analysis modules in operational systems executing predefined analysis tasks.
Where analysts are usually looking to find an analysis solution, analysis mod-
ules are quite often the result of an analyst’s work.

Analysts are either data analysis experts who act as a consultant for other
parts of the business, or they are domain experts attached to the respective
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part of the business, know their data very well, but their data analysis know-
how is limited. The first group of people is very confident in using standard
data analysis or data mining tools, but the second is certainly not. Domain
experts generally know what they are looking for in data, but they might not
know very well, how to do that. They are usually not aware of all relevant
machine learning techniques, nor which one to select for which problem and
especially not, how to configure them in order to get good results.

Unfortunately, most available data analysis tools are centered around tech-
nology, which is quite independent from the actual application problem. On
the other hand, business users like the domain experts mentioned above know
the problem at hand, but not the technology required to solve it. Providers
of data analysis solutions try to fill this gap with solutions tailored to cer-
tain industry sectors. Based on research results and the provider’s knowledge
gained in consulting projects, they build a set of standard analysis models as
a ready-to-use approach. From the user’s viewpoint, such an approach is fine
as long as his problem and requirements are compatible with the provided
solution. If this is not the case, the standard solution can either not be used
at all, or expensive consultants are required to adapt the solution to the user’s
needs which might not be acceptable.

The wizard interface in SPIDA takes a different approach by allowing the
user to specify the analysis problem and preferences regarding the solution at
such a high level that they are easy to understand for non-experts. It then
automatically generates a solution according to these specifications.

In contrast to the creative acts of human analysts, analytical modules in
operational systems are traditionally static. For instance, they might be used
to classify credit card transactions as fraudulent or not or to predict share
prices or sales volumes on a transactional or daily basis. Usually, a human
analyst would create an analysis model, which has to be integrated with the
operational systems. Depending on both the analysis tool and the operational
system, the integration might require software engineers to write an analy-
sis module in the worst case, or at least a wrapper as an interface. With
the introduction of data analysis functionality in databases and a standard-
ised language for model description like Predictive Model Markup Language
(PMML) [2], the integration will be quite simple in the future. Under the
assumption that the analysis tool is able to create a PMML description for
the model in question and the database implements the underlying analysis
algorithm, the PMML description can simply be included in a PL/SQL script
that will be used to analyse data in the operational system. However, it will
take time before data analysis is standard in databases and a large variety of
models can be transferred in that way.

In case of SPIDA, only a simple interface in the operational system is
necessary that would allow the execution of any module created by the wizard.

From time to time, the underlying analysis models have to be adjusted in
order to keep up with changes in the business or the market. Such adaptations
are usually done manually by analysts, who produce new models based on new
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data. Most of the times, the underlying analysis algorithm stays the same, only
parameters change. For example, the weights of a neural network or the rules
in a fuzzy system might be adapted. In case of data analysis functionality in
the database and a PMML model, even algorithms can be changed without
compromising the integrity of operational systems. For example, it might turn
out that a decision tree performs better on a new data set than a support
vector machine that has been used before. By simply exchanging the PMML
description of the model in the database, the new model can be integrated
seamlessly. However, as mentioned earlier this is not standard, yet, and also
the decision for the new algorithm and its integration is still a manual process.

Again, the wizard interface in SPIDA can automate this process by pick-
ing, configuring and implementing new algorithms without user interaction.
The final decision, if a new algorithm will be uploaded into the operational
system will probably still be under human supervision, but the difficult part
of creating it can mostly be achieved by SPIDA.

3 Architecture for a Smart Data Analysis Service

A schema summarising all scenarios in combination with SPIDA is shown
in Fig. 1. Data is fed into the operational system from a data warehouse.
The data analysis module conducts data analysis for the operational system.
Thereby it influences the system’s performance or the performance of related
business processes, because analysis results are usually used to make business
decisions. For example, the data analysis module might be used to predict if
a customer is going to churn and performance measures might be the relative
number of churners not being flagged up by the system and the revenue lost
with them. In that case, dropping system performance will be the result of an
inferior analytics model. Such a drop of performance will be detected by the
monitor and trigger the generation of a new analysis model. The easiest way to
detect dropping performance is by comparing against predefined thresholds.

The reasons for deterioration can be manifold. In most cases, the dynam-
ics of the market are responsible, i.e. the market has changed in a way that

Fig. 1. Monitoring of system performance and requirements and automatic creation
and integration of data analysis modules according to given requirements
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cannot be detected by the analytics model, because such information is usu-
ally difficult to capture. Other reasons include changes in related business
processes and data corruption.

Whenever model generation is triggered by the monitor, the wizard takes
the user requirements and the latest data to build a new model. This process
is being described in Sect. 4. Another reason for building a new model is a
change of user requirements. For example, due to a change of company policy
or for regulatory reasons, a model might be required to be comprehensible
which was not the case before. If, for instance, a neural network had been
used to measure the credit line of a potential borrower, we might be forced
to switch to methods like decision trees or fuzzy systems which create a rule
base that can be understood by managers and the regulator. We might have
to show to the regulator that the model conforms to an equal opportunities
act. The final step consists of turning a data analysis model or process into
an executable module that can directly be called by or integrated with an
operational system. We describe this step in Sect. 6.

In summary, the architecture covers the entire loop from system perfor-
mance and requirements monitoring, the automatic generation of an analysis
model, the build of an executable module and its integration with the oper-
ational system. All these steps are being done automatically, which, to such
extent, is not possible with existing systems.

4 Automating Intelligent Data Analysis

When conducting any kind of data analysis and planning to use the results in
an application we can assume to have

1. A problem definition: What is the problem we would like to solve? Do we
want to predict or classify, to find groups (clustering), rules or dependen-
cies etc?

2. Preferences regarding the solution: If the model can be adapted to new
data, if it is easy to understand (rule-based, simple functions), its accuracy,
execution time etc.

Experts in data analysis are well aware of these analysis problems and pref-
erences. In the following, we assume that the data has already been prepared
for analysis, i.e. it has been compiled from different data sources, if necessary,
and formatted in a way that it can be used by standard data analysis tools.
This process is mostly done with ETL tools (Extract, Transform, Load). An
expert would then

1. Choose analysis algorithms which are suited for the problem and the given
preferences

2. Pre-process data if necessary for the algorithms
3. Configure training parameters of the algorithms
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Fig. 2. Specifying preferences in the wizard, here regarding an explanation facility

4. Run the algorithms, check the performance of created models and match
with preferences again

5. If improvement seems necessary and possible, go back to 3
6. Implement the model in an executable form
7. Integrate with operational system

The last two steps will be further discussed in Sect. 6.
Obviously, all of the above steps require expert knowledge. The wizard

in SPIDA (Fig. 2), on the other hand, performs the steps to certain extent
automatically. It engages the user in a sequence of dialogs where he can spec-
ify the analysis problem and his solution preferences as well as point to the
data source. The wizard will then present all applicable analysis algorithms to
the user ranked by their suitability. The user can pick the most suitable ones
and trigger the creation of models. The wizard builds data analysis processes
around the chosen algorithms, pre-processes the data, configures the algo-
rithms, executes the analysis and validates the models. Information about
accuracy and model complexity (e.g. the size of a generated rule base) is then
available and can be incorporated in measuring the suitability of the models
again. If an improvement of accuracy or model complexity according to the
user requirements seems necessary and possible, the wizard will go back to
Step 3, reconfigure the training algorithms and rebuild the model. The recon-
figurations are a collection of expert rules. For example, if a decision tree is
too complex (too many rules for a simple explanation), the maximum tree
height can be reduced and a smaller tree being induced from data.



www.manaraa.com

Smart Data Analysis Services 297

Fig. 3. Ranking of created models in the wizard

After the model building process has finished, the wizards again ranks all
available models according to their suitability. Figure 3 shows four classifica-
tion models with their overall suitability, simplicity of explanation (if exists)
and accuracy, whereby simplicity was more important than accuracy. In this
example, the user was looking for an adaptable predictive model with simple
explanation. Results including a problem description, basic information about
the data, model accuracy and explanations are presented in a HTML report.
Figure 4 shows the part of report dealing with a fuzzy rule set as the learned
model for a classifier.

Even at this stage, the user can still vary some of his requirements and
finally pick the model he likes to use in his application. In the service scenario
presented in this chapter, the user is taken out of the loop and the wizard
automatically picks the most suitable method according to the ranking.

Figure 5 shows two typical data analysis processes automatically created
by the wizard. The blocks represent data access, filters, data analysis models
and visualisations. Such a process can also be manually designed, configured
and executed in SPIDA’s expert mode.

The wizard is based on knowledge collected from experts in data analy-
sis. The basic idea is to match user requirements with properties of analysis
methods and models. Since user requirements might look quite different from
model properties, we use a a rule base to map user requirements onto desired
properties, see Fig. 6. Some requirements and properties are inherently fuzzy,
a user might for example ask for a model that is easy to understand. For this
reason, the mapping rules are fuzzy as well.
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Fig. 4. An explanatory model for a classification problem in a report generated by
SPIDA

Fig. 5. Two typical data analysis processes created by the wizard with blocks for
data access, filters and data analysis models

Fig. 6. Map user requirements onto desired properties and match with actual prop-
erties
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In the current version of the wizard, the analysis problem and the user
preferences are specified at a similar level as desired properties. They include

– Type of analysis problem (classification, function approximation, cluster-
ing, dependency analysis etc.)

– Importance of an explanation facility (do not care, nice to have, impor-
tant)

– Type of explanation (do not care, rules, functions)
– Adaptability to new data (do not care, nice to have, important)
– Integration of prior knowledge (do not care, nice to have, important)
– Simplicity of an explanation
– Accuracy
– Balance importance of accuracy and simplicity

A typical mapping rule is “If simplicity preference is high and an explanation
is important, the desired simplicity is medium with degree 0.6 or high with
degree 1.0”.

The underlying fuzzy reasoning concepts are described in detail in [3]. Us-
ing fuzzy matching techniques as briefly described in Sect. 5 and in more detail
in [4], the desired properties will be matched with method and model prop-
erties of all available analysis algorithms. Thereby, method properties are the
ones related to the analysis method like fuzzy methods providing a model ex-
planation in terms of rules as opposed to a black box method like a neural net-
work. Model properties, on the other hand, are specifically related to the model
as being created by a method, e.g. the actual accuracy of a trained neural
network. Naturally, model properties can only be evaluated after a model has
been created (Step 4) whereas method properties can be checked at any time.

The current version of SPIDA and its wizard supports Neural Networks,
Fuzzy systems, Neuro-Fuzzy systems NEFPROX and NEFCLASS, Support
Vector Machines, Decision Trees, Linear Regression and Association Rules
among other techniques.

Alternative approaches for the automatic creation of data analysis
processes include [5–8]. The system closest to our Wizard regarding the
required capabilities is the one described in [7, 8]. It uses an ontology based
approach and simply describes analysis methods and pre-/post-processing
methods as input/output blocks with specific interfaces. The system is built
on top of the data analysis package Weka [9]. If the interfaces between two
blocks match, they can be concatenated in an analysis process. If a user wants
to analyse a data set, all possible analysis processes are created and executed.
Once a suitable analysis process has been identified, it can be stored, re-used
and shared. The authors suggest a heuristic ranking of analysis processes in
order to execute only the best processes. However, they only use speed as
a ranking criterion, which can be easily determined as a feature of an algo-
rithm. More useful features about the quality of the analysis like accuracy
are obviously dependent on the analysis process as well as the analysed data
and are much more difficult to determine up front. Therefore, the reported
results have not been very encouraging so far.
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5 Measuring the Match of Requirements and Properties

We assume that the original user requirements have already been mapped
onto desired properties and that information about the respective method and
model properties is available. Each property is represented by a fuzzy vari-
able that takes weighted combinations of fuzzy words as their values [3]. The
desired accuracy, for example, could be ‘medium (1.0) + high (1.0)’ whereas
a created analysis model might be accurate to the degree of ‘low (0.3) +
medium (0.7)’. The numbers in brackets denote the weight of the respective
fuzzy word. In other words, we are looking for a model with medium or high
accuracy, and the created model’s accuracy is low with degree 0.3 and medium
with degree 0.7. In this example, the weights for the desired accuracy sum up
to 2, whereas the ones for the actual accuracy add up to 1. We interpret a
combination of fuzzy words with a sum of weights greater than one as alterna-
tive fuzzy words. Rather than modeling the weights as probabilities as in [3],
we assume a possibility density function [10, 11] on the fuzzy words, which
allows for alternative values which, as an extreme case, could all be possible
without restriction. Thereby, we define the semantics of a fuzzy word’s degree
of possibility as the maximum acceptable probability of a property. In the
example above, we were entirely happy with an analysis model of medium
or high accuracy. We therefore assigned the possibilistic weight 1 to both of
them, i.e. models exhibiting the property ‘low (0.0) + medium (a) + high (b)’
with a + b = 1 are fully acceptable. In case of the requirement ‘low (0.0) +
medium (0.0) + high (1.0)’ and the above property with a > 0, the weight a
exceeds the possibility for ‘medium’ and therefore at least partially violates
the requirements. Degrees of possibility can be any real number in [0, 1].

In [4], we derived the following measure C for the compatibility of fuzzy re-
quirements R̃ and fuzzy properties P̃ . µR̃ and µP̃ denote the fuzzy membership
functions of R̃ and P̃ defining the weights of fuzzy words. Using the examples
above, we might have µP̃ (low) = 0.3, µP̃ (medium) = 0.7 and µP̃ (high) = 0.

C(P̃ , R̃) = 1−
∑
x∈X :

µP̃ (x)>µR̃(x)

µP̃ (x)− µR̃(x) (1)

Figure 7 illustrates (1) showing a fuzzy set R̃ for requirements on the left
hand side (we used a continuous domain for better illustration), the right

Fig. 7. Fuzzy sets of requirements R̃, properties P̃ and the intersection R̃′. The
grey area represents incompatibility of properties with requirements
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triangular function is the fuzzy set P̃ for properties. The right term in (1)
measures the size of the grey area, which can be interpreted as a degree to
which the properties violate the requirements. The size of the area is bounded
by the area underneath the membership function of P̃ which we stipulated to
be 1. That means that the right term measures the proportion of properties
P̃ that violate the requirements and C altogether measures the area of the
intersection, i.e. the compatibility of P̃ and R̃. More detailed information can
be found in [4] and about matching fuzzy sets in general in [12].

6 Integration of Analytics Module with Operational
System

When it comes to integrating modules with operational systems, software en-
gineers can nowadays choose from a variety of techniques that both depend on
the operational system and the module. Where some years ago, modules were
quite often especially tailored for the operational system, nowadays, much
more modular approaches are used that allow for using the same modules
in different operational systems on the one hand, and replacing modules in
operational systems on the other hand. Apart from the database approach
mentioned in Sect. 2, where data analysis can directly be conducted by the
database and analysis models are defined using a standard like PMML, other
techniques use libraries with standard interfaces (API) and provide a respec-
tive interface in the operational system or use even less coupled techniques
like web services. For our system, we decided to build executable Java libraries
which can easily be used in either way.

Since we require a variety of different data analysis techniques to cover
as many applications as possible, the starting point for the generation of
analysis modules are data analysis platforms like SPIDA. The actual analysis
model required by an operational system typically uses only a tiny fraction of
such a platform’s functionality. For reasons of saving space and finally costs –
depending on the license model, pricing depends on the functionality being
chosen – we want to restrict the module to the functions actually needed by
the underlying data analysis model or process.

In case of SPIDA, we are looking to create analytics modules, which are
pieces of software independent from the SPIDA platform, corresponding to a
particular data analysis model. If extracted the independent piece of software
can be used as a library with fixed API by the operational system. As men-
tioned above, changes in the analysis model are completely hidden from the
operational system by the module, i.e. the module can easily be replaced if
required due to changes in requirements or dropping performance.

At the heart of the integration of an analytic module in SPIDA is a general
framework with which an operational system can communicate and specify its
requirements and obtain an analytic module from SPIDA as a Java library.
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Table 1. Compression rates of dedicated Java libraries for various mining algorithms
compared to whole SPIDA package

Model Relative size (%)

Linear Regression 33
NEFPROX 48
Decision Trees 17
Support Vector Machines 17
Neural Networks 21
NEFCLASS 47

First, the definition of the analysis problem and the user requirements
are being transferred to the wizard that builds a data analysis process. This
process will be transformed into an XML description. SPIDA parses the XML
description and identifies the corresponding analysis components like data
access, filters and the actual analysis blocks. A mapping is made between
the required components and the corresponding Java classes of the platform.
SPIDA’s software extractor component then finds all the dependent classes
for this initial set of classes. The extractor uses application knowledge and a
host of other extraction techniques to find all the additional classes required
to make it executable and independent from the platform. This complete set
of all component classes is turned into a Jar library with suitable properties
by a Jar making component of SPIDA. This Jar library is passed to the
operational system, which can access the API provided in the library to control
the execution of the analysis module.

As an alternative to using the wizard, XML descriptions of data analysis
processes can directly be used to extract a Java library which is able to execute
the given process. Furthermore, SPIDA provides a simple wrapper which can
execute a given Java library. In that way we can easily create compact stand-
alone packages for specific data analysis tasks.

If we think of data analysis services, we can expect many different concur-
rent analysis requests. Since each analysis process will create an executable
object, the size of dedicated Jar libraries should be kept as small as possible
in order to allow for as many users as possible. Table 1 shows the compression
rates for libraries created for different data mining algorithms compared to
the whole SPIDA package, which range between 47 and 17%.

7 Conclusions

As a reaction to increasing dynamics in the market place, we propose a generic
architecture for a smart data analysis service for operational systems. Where
current systems require manual intervention by data analysis experts if a
data analysis module needs updating, our architecture automatically detects
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changes in performance or requirements, builds a new data analysis model
and wraps the model into an executable Java library with standard API that
can easily be accessed by operational systems. When building data analysis
models, the wizard takes into account high-level user requirements regarding
an explanation facility, simplicity of an explanation, adaptability, accuracy etc.
In this way, we can vary the data analysis solution as much as possible without
violating requirements. Until now, adaptive solutions only retrained models
based on new data, i.e. an analysis method like a neural network was chosen
once and for all and regularly adapted to new data. Switching automatically –
without user interaction – to another method, e.g. to a support vector machine
was not possible, let alone using user requirements for the automatic selection
of the most suitable analysis method.

The data analysis platform SPIDA including the wizard has been fully im-
plemented, also the automatic generation of executable data analysis modules.
Future work includes assembling the entire architecture and trialling it in one
of BT’s operational Customer Relationship Management (CRM) systems.
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Summary. Research activity in data mining has been initially focused on defining
efficient algorithms to perform the computationally intensive knowledge extraction
task (i.e., itemset mining). The data to be analyzed was (possibly) extracted from
the DBMS and stored into binary files. Proposed approaches for mining flat file
data require a lot of memory and do not scale efficiently on large databases. An im-
proved memory management could be achieved through the integration of the data
mining algorithm into the kernel of the database management system. Furthermore,
most data mining algorithms deal with “static” datasets (i.e., datasets which do not
change over time). This chapter presents a novel index, called I-Forest, to support
data mining activities on evolving databases, whose content is periodically updated
through insertion (or deletion) of data blocks. I-Forest is a covering index that rep-
resents transactional blocks in a succinct form and allows different kinds of analysis.
Time and support constraints (e.g., “analyze frequent quarterly data”) may be en-
forced during the extraction phase. The I-Forest index has been implemented into
the PostgreSQL open source DBMS and it exploits its physical level access methods.
Experiments, run for both sparse and dense data distributions, show the efficiency
of the proposed approach which is always comparable with, and for low support
threshold faster than, the Prefix-Tree algorithm accessing static data on flat file.

1 Introduction

Many real-life databases (e.g., data marts) are updated by means of blocks
of periodically incoming business information. In these databases, the content
is periodically updated through either addition of new transaction blocks or
deletion of obsolete ones. Data can be described as a sequence of incoming data
blocks, where new blocks arrive periodically or old blocks are discarded [12,13].
Examples of evolving databases are transactional data from large retail chains,
web server logs, financial stock tickers, and call detail records. Since the data
evolve overtime, algorithms have to be devised to incrementally maintain data
mining models.
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Different kinds of analysis could be performed over such data like (i) mining
all available data (ii) mining only the most recent data (e.g., last month data),
(iii) mining periodical data (e.g., quarterly data) and (iv) mining selected
data blocks (e.g., data related to the first month of last year and the first
month of this year). Consider for example transactional data from large retail
chains, where every day, after shop closing, a set of transactions is added to
the database [12]. In this scenario, market analysts are interested in analyzing
different portions of the database to discover customer behaviors. For example,
they may be interested in analyzing purchases before Christmas or during
summer holidays.

Association rule mining is an expensive process that requires a sig-
nificant amount of time and memory. Hence, appropriate data structures
and algorithms should be studied to efficiently perform the task. Associ-
ation rule mining is a two-step process: Frequent itemset extraction and
association rule generation. Since the first phase is the most computation-
ally intensive knowledge extraction task [1], research activity has been ini-
tially focused on defining efficient algorithms to perform this extraction task
[1, 3, 4, 7, 10, 15, 18, 20]. The data to be analyzed is (possibly) extracted from
a database and stored into binary files (i.e., flat files). Many algorithms, both
memory-based [1,3,7,10,13,16,18] and disk-based [4,20], are focused on spe-
cialized data structures and buffer management strategies to efficiently extract
the desired type of knowledge from a flat dataset.

The wide diffusion of data warehouses caused an increased interest in cou-
pling the extraction task with relational DBMSs. Various types of coupling
(e.g., loose coupling given by SQL statements exploiting a traditional cursor
interface, or tight coupling provided by optimizations in managing the inter-
action with the DBMS) between relational DBMSs and mining algorithms
have been proposed.

A parallel effort was devoted to the definition of expressive query lan-
guages to specify mining requests. These languages often proposed extensions
of SQL that allowed the specification of various types of constraints on the
knowledge to be extracted (see [5] for a review of most important languages).
However, the proposed architectures were at best loosely coupled with the un-
derlying database management system [17]. The final dialogue language with
the relational DBMS was always SQL.

One step further towards a tighter integration is made in [6], where tech-
niques for optimizing queries including mining predicates have been proposed.
Knowledge of the mining model is exploited to derive from mining predicates
simpler predicate expressions, that can be exploited for access path selection
like traditional database predicates. DBMSs exploit indices to improve the
performance on complex queries. The intuition that the same approach could
be “exported” to the data mining domain is the driving force of this chap-
ter. A true integration of a novel data mining index into the PostgreSQL
open source DBMS [19] is proposed and advantages and disadvantages of the
proposed disk-based data structures are highlighted.



www.manaraa.com

Indexing Evolving Databases for Itemset Mining 307

In this chapter we address itemset extraction on evolving databases. We
propose an index structure, called Itemset-Forest (I-Forest), for mining data
modeled as sequences of incoming data blocks. The index supports user in-
teraction, where the user specifies different parameters for itemset extraction.
It allows the extraction of the complete set of itemsets which satisfy (i) time
constraints (which temporal data we are interested in) and (ii) support con-
straints (minimum itemset frequency).

Since the I-Forest index includes all attributes potentially needed during
the extraction task, it is a covering index. Hence, the extraction can be per-
formed by means of the index alone, without accessing the database. The data
representation is complete, i.e., no support threshold is enforced during the
index creation phase, to allow reusing the index for mining itemsets with any
support threshold.

The I-Forest index is characterized by a set of compact structures, one for
each incoming data block. Each structure provides a locally compact represen-
tation of the data block. This modular structure allows dynamically updating
the I-Forest index when new data blocks arrive or old data blocks are dis-
carded. An interesting feature of the index is its ability to represent distinct
data blocks by means of different data structures. Hence, the data structure
of a block can be adapted to the data distribution.

The physical organization of the I-Forest index supports efficient informa-
tion retrieval during the itemset extraction task. The I-Forest index allows
selective access to the needed information, thus reducing the overhead in ac-
cessing disk blocks during the extraction task. Our approach, albeit imple-
mented into a relational DBMS, yields performance always comparable with
and for low supports faster than the Prefix-tree algorithm [15] (FIMI ’03 Best
Implementation) on flat file.

2 Problem Statement

Let I = {i1, i2, . . ., in} be a set of items. A transactional data block b is a
collection of transactions, where each transaction T is a set of items in I. Let
bk be the instance of b arrived at time k, where k is a time identifier. The
state of a transactional database D at time t reflects all blocks received until
time t. Hence, it is a finite sequence of data blocks {b1, b2, . . ., bn}, denoted as
D [1 . . . t]. D [1 . . . t] can be represented as a relation R, where each tuple is a
triplet (Time, TransactionId, ItemId). When a new block arrives, its transac-
tions are added to R and t is updated. Analysis can be performed on sets of
blocks not necessarily in sequence. We denote as Ω the set of time identifiers
of the analyzed blocks (e.g., Ω = {1, 2, 5} means that we are interested in
blocks {b1, b2, b5}). RΩ ⊆ R is the set of tuples associated to the blocks in Ω.

Given a set of constraints, the itemset extraction task is the extraction of
the complete set of itemsets in R which satisfy the constraints. Constraints
are among the following:
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– Time constraint, which allows the selection of a subset of blocks in R by
means of Ω.

– Support constraint, which defines the minimum support threshold to per-
form itemset extraction.

3 I-Forest Index

Itemset mining on sequences of incoming data blocks, may require a signif-
icant amount of main memory during the extraction process. By means of
the I-Forest index, incoming data blocks are stored on disk in appropriate
(compact) structures. During the mining phase, only the data required by the
current mining process is actually loaded in main memory.

To allow different kinds of analysis and easy incremental insertion of new
blocks (or deletion of obsolete ones), each data block is represented separately
and independently of all others. Hence, the index is a forest of structures that
represent data blocks in R. Each data block bk in R is represented in a com-
pact structure named Itemset Forest block (IF-block). A separate structure,
the Itemset Forest-Btree (IF-Btree), links information belonging to different
blocks that is accessed together during the mining process. The IF-Btree is a
B-tree structure, that provides selective access to data in the IF-blocks to sup-
port efficient retrieval of information during the mining process. The complete
structure of the I-Forest index is shown in Fig. 1.

Since the I-Forest index should be reusable for many extraction sessions
with different constraints, its data representation is complete. No constraint
(e.g., support) is enforced during the index creation phase. I-Forest is a cov-
ering index, i.e., it allows itemset extraction without accessing relation R. It
includes both the time and item identifier attributes, which may be needed
during the extraction task.

The I-Forest structure can be easily updated when new data blocks ar-
rive (or old data blocks are removed). Each block bk is stored independently

Fig. 1. I-Forest structure
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by means of a IF-block, which provides a lossless and locally compact rep-
resentation of the corresponding portion of R. Each IF-block may adopt a
different data representation. Hence, the I-Forest index can easily adapt to
skewed block distributions, where each block is characterized by a different
data distribution.

3.1 I-Forest Structure

The I-Forest index includes two elements: the Itemset Forest-blocks (IF-
blocks) and the Itemset Forest-Btree (IF-Btree). In the following we describe
in more detail each structure.

IF-blocks. Many different compact structures could be adopted for repre-
senting IF-blocks (e.g., FP-tree [16], Inverted Matrix [10], Patricia-Tries [18],
I-Tree [4]). Currently, each IF-block is represented by means of a slight vari-
ation of the I-Tree. For each (relational) data block bk in R, an I-Tree (Itk)
and an ItemList (ILk) are built [4]. The Itk associated to bk is a prefix tree,
where each node corresponds to an item and each path encodes one or more
transactions in bk. Each node is associated with a node support value. This
value is the number of transactions in bk which contain all the items included
in the subpath reaching the node. Each item is associated to one or more
nodes in the same Itk. ILk has one entry for each item in bk, for which it
reports the blockk-item-support value, i.e., the item frequency in bk, and the
block identifier k. The blockk-item-support value is obtained by adding the
supports of all nodes in Itk associated to the item. The global item support
value is the frequency of the item in R. This value is obtained by adding the
blockk-item-supports of the item for each block bk in R.

Tables 1 and 2 report (in a more succinct form than the actual relational
representation) two data blocks, arrived at times t = 1, 2, used as a running
example. Figures 2 and 3 show the structure of the corresponding It1 and It2

Table 1. Data block at time t = 1

Time TID Items

1 1 g,b,h,e,p,v,d
1 2 e,m,h,n,d,b
1 3 p,e,c,i,f,o,h
1 4 j,h,k,a,w,e
1 5 n,b,d,e,h
1 6 s,a,n,r,b,u,i
1 7 b,g,h,d,e,p
1 8 a,i,b
1 9 f,i,e,p,c,h
1 10 t,h,a,e,b,r
1 11 a,r,e,b,h
1 12 z,b,i,a,n,r
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Table 2. Data block at time t = 2

Time TID Items

2 1 L
2 2 l,q
2 3 e,l,q,r
2 4 b,d,e,l,q,r
2 5 e,f,l,q,r,z
2 6 d,x,z
2 7 a,c,d,e,x,z
2 8 a,c,e,f,g,x
2 9 a,b,c,x
2 10 q,r,x
2 11 b,d,g,h,q,r,x
2 12 a,b,c,d,q,r,x,z

Fig. 2. IF-blocks: It1 for block 1

Fig. 3. IF-blocks: It2 for block 2
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associated to blocks 1 and 2 respectively. The corresponding IL1 and IL2 are
omitted to ease readability. Consider item e in It1. Its block1-item-support
is 9 (there are two nodes associated to item e, the first has node support
6 and the second 3). Furthermore, the global item support of e is 13 (its
block1-item-support is 9 and its block2-item-support is 4).

As shown in Figs. 2 and 3, in each Itk nodes are clustered in three layers:
Top, middle, and bottom [4]. Correlation analysis is exploited to store in the
same disk block nodes accessed together during the mining process to reduce
the number of reads. Nodes in the IF-block are linked by means of pointers
which allow the retrieval from disk of the index portion required by the mining
task. Each node is provided with pointers to three index blocks: (i) The disk
block (and offset) including its parent (continuous edges in Figs. 2 and 3), (ii)
the disk block (and offset) including its first child (dashed edges in Figs. 2
and 3), and (iii) the disk block (and offset) including its right brother (dotted
edges in Figs. 2 and 3). The pointers allow both bottom-up and top-down
tree traversal, thus enabling itemset extraction both with item and support
constraints.

IF-Btree. It allows selective access to the IF-block disk blocks during the
mining process. It has one entry for each item in relation R. The IF-Btree
leaves contain pointers to all nodes in the IF-blocks. Each pointer contains
the node physical address and the identifier of the data block including the
node.

3.2 Updating the I-Forest Index

The proposed index supports efficient index updating when data blocks are
either inserted or deleted. When a new data block bk is available, the corre-
sponding IF-block (Itk) is built. The IF-Btree structure is also updated by
inserting pointers to the nodes in Itk. Hence, Itk data are linked to the data
already in the I-Forest index. When a data block bk is discarded, the corre-
sponding Itk is removed and the IF-Btree is updated by removing pointers to
the nodes in Itk. Functions available in the PostgreSQL library are used to
update the IF-Btree.

3.3 Storage

The I-Forest index is stored in two relational tables. Table TItems stores all
ILk, while table TIF -blocks stores every Itk. The IF-Btree is stored in a B-Tree
structure. To access records in TIF -blocks, TItems, and in the IF-Btree, func-
tions available in the access methods of PostgreSQL [19] are used. Table TItems

contains one record for each item that appears in each Itk. Each record con-
tains data block identifier, item identifier, and blockk-item-support. Table
TIF−blocks contains one record for each node in each Itk. Each record con-
tains node identifier, item identifier, local node support, physical location
(block number and offset within the block) of its parent, physical location
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(block number and offset within the block) of its first child, and physical
location (block number and offset within the block) of its right brother.

4 Mining Itemsets

This section describes how itemset extraction with different constraints ex-
ploits the I-Forest index. In this chapter we address the following constraints:

– Time constraint. Set Ω contains the time identifiers for the selected data
blocks. When the time identifier k is included in Ω, the corresponding
data block bk is analyzed. When no time constraint is enforced, all data
blocks are considered in the extraction process.

– Support constraint. Itemsets are extracted when their frequency is higher
than a minimum threshold.

Itemset extraction is performed in two steps. First, eligible items, i.e., items
which satisfy all the enforced constraints, are selected. Then, the extrac-
tion process is performed. To retrieve all necessary information, both tables
TIF−blocks and TItems, and the IF-Btree are accessed by using the read func-
tions available in the PostgreSQL access methods [19].

Enforcing constraints. The constraint enforcement step selects the items
which both belong to blocks in Ω and satisfy the support constraint. These
items are stored in set Λ. When no support constraint is enforced, items are
inserted into Λ if they belong to at least one block in Ω. When a support con-
straint is enforced, we compute the joint support for each item by considering
the blockk-item-supports for blocks in Ω. For each block bk, the blockk-item-
supports are stored in ILk. Items with joint support higher than the support
threshold are finally inserted into Λ.

Itemset extraction. The extraction is performed in two steps: (i) Retrieval
of the necessary data from the I-Forest index and (ii) itemset extraction from
the loaded data.

For each item in Λ, we read all the I-Forest paths including the item. To
this aim, we retrieve the IF-Btree leaves storing the pointers to all I-Forest
nodes associated to the item. Each pointer includes the node physical address
and the identifier of the data block including the node. Only nodes belonging
to blocks in set Ω are considered.

For each node associated to the item, all the I-Forest paths including it
are retrieved from disk. Each node is read from table TIF -blocks by means of
its physical address. The path between the node and the tree root is traversed
bottom up. This path is read from table TIF -blocks by following the physical
addresses of parent nodes. The paths in the node subtree are traversed top
down. These paths are read from table TIF -blocks by following the physical
addresses of the first child node and the right brother node.

Once read, paths are initially stored in main memory in a temporary data
structure. When all paths including the current item have been retrieved, the
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temporary data structure is compacted in a tree structure similar to the FP-
Tree [16]. Next, itemset extraction is performed by means of an adaptation of
the FP-Growth algorithm [16], which is a very efficient algorithm for itemset
extraction.

5 Experimental Results

We performed a variety of experiments to validate our approach, by addressing
the following issues: (i) performance to generate the I-Forest index, in terms of
both index creation time and index size, (ii) performance to extract frequent
itemsets (by mining all available data or selected data blocks), in terms of
both execution time and memory usage, (iii) effect of the DBMS buffer cache
size on the hit rate, and (iv) effect of the time constraint.

We ran various experiments by considering both dense and sparse data
distributions. We report here the results of the experiments on four represen-
tative datasets: Connect, Pumsb, and Kosarak datasets downloaded from UCI
Machine Learning Repository [11] and the synthetic dataset T25I300D6M [2].
Connect and Pumsb [11] datasets are dense datasets, while Kosarak [11] and
T25I300D6M [2] are very large and sparse. Dataset characteristics are reported
in Tables 3 and 4.

To simulate block evolution, we considered three different configurations
for Connect, Pumsb, and Kosarak datasets. For the first two configurations,
denoted as Dataset-50 + 50 and Dataset-25 + 25 + 25 + 25, we split the orig-
inal dataset respectively in two and four blocks with the same number of
transactions. The last1 configuration, denoted as Dataset-100 + 100, is com-
posed by two identical blocks obtained by cloning the original dataset. The
original dataset, denoted as Dataset-100, represents our lower bound on per-
formance since it has no overhead due to block partitioning. To validate our
approach, we compare our performance to the FIMI best implementation al-
gorithm Prefix-tree [15] (FIMI ’03 Best Implementation), a very effective state
of the art algorithm for itemset extraction from flat file.

To analyze the performance of the extraction process in large evolving
databases, we exploited the synthetic dataset T25I300D6M. This dataset is
characterized by a sparse data distribution and a very large number of trans-
actions (i.e., 5,999,988). We split the original dataset in 12 blocks with the
same number of transactions. We analyze the performance of the extraction
process when increasing the number of selected index blocks and for various
support thresholds.

Both the index creation procedure and the itemset extraction algorithm are
coded into the PostgreSQL open source DBMS [19]. They have been developed

1 We also considered different block partitioning strategies, e.g., Dataset-75 + 25,
where the first block contains 75% of the transactions and the second 25%. These
experiments are not reported, since results are not significantly different.
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Table 3. Characteristics of dataset configurations and corresponding index

Dataset configuration Dataset I-Forest index

Size IF-Blocks IF-Btree Creation

Transactions Items AvTrSz (KB) (KB) (KB) time (s)

CONNECT-100 67, 557 129 43 25, 527 22, 634 4, 211 11.05

CONNECT-100 + 100 135, 114 129 43 51, 054 45, 268 8, 420 22.10

CONNECT-50 33, 779 126 43 12, 525 12, 138 – 7.50

CONNECT-50 33, 778 129 43 12, 002 12, 524 – 7.20

CONNECT-50 + 50 – – – – 24, 662 4, 588 14.70

CONNECT-25 16, 890 123 43 6, 032 5, 902 – 2.47

CONNECT-25 16, 890 125 43 6, 499 6, 273 – 2.64

CONNECT-25 16, 890 129 43 6, 499 6, 210 – 2.67

CONNECT-25 16, 887 129 43 6, 497 6, 830 – 2.85

CONNECT-25 + 25 + 25 + 25 – – – – 25, 215 4, 691 10.63

PUMSB-100 98, 092 2, 144 37.01 35, 829 57, 932 10, 789 34.47

PUMSB-100 + 100 196, 184 2, 144 37.01 71, 658 115, 932 21, 562 69.00

PUMSB-50 49, 046 1946 37.01 17, 712 30, 415 – 21.50

PUMSB-50 49, 046 1999 37.01 17, 714 32, 026 – 24.18

PUMSB-50 + 50 – – – – 62, 441 11, 625 45.68

PUMSB-25 24, 523 1787 37.01 8, 756 16, 592 – 8.41

PUMSB-25 24, 523 1801 37.01 9, 157 16, 668 – 8.56

PUMSB-25 24, 523 1829 37.01 8, 759 17, 740 – 9.04

PUMSB-25 24, 523 1824 37.01 9, 157 17, 113 – 8.73

PUMSB-25 + 25 + 25 + 25 – – – – 68, 132 12, 676 34.74

KOSARAK-100 1, 017, 029 41, 244 7.9 85, 435 312, 647 58, 401 893.81

KOSARAK-100 + 100 2, 034, 058 41, 244 7.9 170, 870 625, 294 116, 472 1787.50

KOSARAK-50 508, 515 35, 586 7.9 42, 310 160, 020 – 648.56

KOSARAK-50 508, 515 35, 139 7.9 43, 125 159, 458 – 651.06

KOSARAK-50 + 50 – – – – 319, 479 59, 609 1299.62

KOSARAK-25 254, 258 30, 477 7.9 20, 692 81, 416 – 115.25

KOSARAK-25 254, 258 29, 666 7.9 21, 167 82, 199 – 109.27

KOSARAK-25 254, 258 30, 023 7.9 21, 988 81, 425 – 111.76

KOSARAK-25 254, 255 29, 531 7.9 21, 588 81, 512 – 108.80

KOSARAK-25 + 25 + 25 + 25 – – – – 326, 552 60, 386 445.08

in ANSI C. Experiments have been performed on a 2,800 MHz Pentium IV
PC with 2 GB main memory. The buffer cache of PostgreSQL DBMS has been
set to the default size of 64 blocks (block size is 8 KB). All reported execution
times are real times, including both system and user time, and obtained from
the unix time command as in [14]. For the considered datasets, and for all
configurations, the index has been generated without enforcing any support
threshold.

5.1 I-Forest Index Creation and Structure

Table 3 reports the number of transactions and items, and the average trans-
action size (AvgTrSz) characterizing the considered dataset configurations
for Connect, Pumsb, and Kosarak datasets. Table 3 also shows the size of
the corresponding I-Forest index. Table 4 reports the same information for
the T25I300D6M synthetic dataset. In this case, the dataset is partitioned
in 12 blocks (denoted as T25I300D6M-bi) including the same number of
transactions.



www.manaraa.com

Indexing Evolving Databases for Itemset Mining 315

Table 4. Characteristics of T25I300D6M dataset partitioning and corresponding
indexes

Dataset configuration Dataset I-Forest index

IF-Blocks IF-Btree Creation

Transactions Items AvTrSz Size (KB) (KB) (KB) time

(sec)

T25I300D6M-b1 500, 000 28, 381 25 163, 573 711, 497 – 639.90

T25I300D6M-b2 500, 000 28, 402 25 166, 285 711, 273 – 629.18

T25I300D6M-b3 500, 000 28, 401 25 178, 526 712, 295 – 633.63

T25I300D6M-b4 500, 000 28, 409 25 178, 496 712, 285 – 630.62

T25I300D6M-b5 500, 000 28, 408 25 178, 494 711, 754 – 631.87

T25I300D6M-b6 500, 000 28, 398 25 178, 563 711, 733 – 629.49

T25I300D6M-b7 500, 000 28, 392 25 178, 560 711, 749 – 631.27

T25I300D6M-b8 500, 000 28, 399 25 178, 583 712, 081 – 629.09

T25I300D6M-b9 500, 000 28, 386 25 178, 563 711, 587 – 630.95

T25I300D6M-b10 500, 000 28, 414 25 178, 541 711, 689 – 626.27

T25I300D6M-b11 500, 000 28, 399 25 178, 601 712, 104 – 630.64

T25I300D6M-b12 499, 988 28, 404 25 178, 533 711, 664 – 631.19

T25I300D6M-b1−12 5, 999, 988 300, 000 25 2, 110, 318 8, 541, 711 397,097 7574.1

For each dataset configuration, the overall size of all IF-blocks is obtained
by summing the size of the IF-blocks in the I-Forest index. The IF-Btree
contains pointers to all nodes in the IF-blocks. Hence, the IF-Btree size is
proportional to the total number of nodes in the IF-blocks of I-Forest.

The I-Tree internal block representation is more suitable for dense data
distributions (e.g., the Connect dataset). In the I-Tree, correlated transac-
tions are represented by a single path. Hence, in dense datasets where data
are highly correlated, the I-Tree structure provides good data compression.
For sparse data distributions (e.g., the Kosarak dataset), where data are
weakly correlated, a lower data compression is achieved. In this case, stor-
age of the IF-blocks requires more disk blocks. Alternative representations
(e.g., Patricia-Tries [18]) may reduce the required disk space. Block partition-
ing increases the overall I-Forest size (including both IF-blocks and IF-Btree
elements). The increase is higher for dense than for sparse data distributions,
but always not significant. In dense datasets, the I-Tree compactness is par-
tially lost due to block partitioning. Transactions correlated in the original
dataset, but belonging to different data blocks, are represented as disjoint
paths. In sparse datasets, most transactions are characterized by disjoint paths
already in the original dataset. In particular, Connect-25 + 25 + 25 + 25 and
Connect-50+50 configurations require 11.36 and 8.9% KB more than Connect-
100. Pumsb-25 + 25 + 25 + 25 and Pumsb-50 + 50 configurations require 11.7
and 7.7% KB more than Pumsb-100. Instead, for the Kosarak dataset, which
is sparser, Kosarak-25+25+25+25 and Kosarak-50+50 configurations require
2.16 and 4.28% KB more than Kosarak-100.
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Index creation time is mainly affected by two factors: Writing the index
blocks on disk and performing correlation analysis. Due to block partitioning,
a larger number of nodes has to be written. However, smaller data blocks
reduce the complexity of the correlation analysis task, and thus the time
needed for it. Results show that the index creation time for the Dataset-25 +
25 + 25 + 25 configuration is always lower than (or at most comparable to)
that for Dataset-100.

Since T25I300D6M is a very sparse dataset, block partitioning does not
increase significantly the overall size of the I-Forest index. In this dataset most
transactions are represented by disjoint paths already in the original dataset.
The main overhead in the index size is due to the storage of the physical
pointers that link nodes. However, this information is required to support the
effective retrieval of correlated data during the mining process, thus reducing
the number of disk reads.

5.2 Itemset Extraction Performance

To evaluate the performance of our approach, we considered the following
configurations of the I-Forest index: (i) the best case, represented by Dataset-
100 (no partitioning), (ii) general cases, represented by Dataset-50 + 50 and
Dataset-25+25+25+25, and (iii) the worst case, represented by Dataset-100+
100 (being the two data blocks identical, during the extraction phase both IF-
blocks have always to be accessed).

Figures 4 and 5 report the run time for frequent itemset extraction with
various support thresholds for Connect, Pumsb and Kosarak datasets, in the
four configurations. Figures 4 and 5 also show the run time for the Prefix-Tree
algorithm [15] on Dataset-100 (flat file). For all experiments we neglect time
for writing generated itemsets. When low support thresholds are considered,
our approach, albeit implemented into a relational DBMS, is always signifi-
cantly faster than the Prefix-tree algorithm on flat file. When higher supports
are considered, our approach yields performance comparable to the Prefix-tree

(a) Connect (b) Connect

Fig. 4. Frequent itemset extraction time
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Fig. 5. Frequent itemset extraction time: Kosarak

Fig. 6. Effect of block partitioning on frequent itemset extraction time: Kosarak

algorithm. When using the I-Forest index based approach, the overhead due
to data retrieval from disk is counterbalanced by an efficient memory usage
during the extraction phase. Memory usage is further discussed in the next
section.

Figures 6 and 7 analyze the overhead in frequent itemset extraction in-
troduced by block partitioning for Connect, Pumsb and Kosarak datasets in
the four configurations. Block partitioning introduces an overhead on data re-
trieval since data are accessed from different IF-blocks. Experimental results
show that this overhead does not significantly affect the extraction perfor-
mance for any support thresholds. In particular, the overhead due to block
partitioning is expected to (slightly) increase when mining itemsets with high
support constraint. Items occurring in many transactions are potentially cor-
related and they can be represented in a single index path. Block partitioning
may split this path in different blocks thus affecting data retrieval perfor-
mance. On the other hand, when dealing with smaller data blocks, the index
creation procedure can provide a clever physical organization of each IF-block,
because the correlation analysis procedure may become more effective. Hence,
within each IF-block, data accessed together during the extraction phase are
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(a) Connect (b) Pumsb

Fig. 7. Effect of block partitioning on frequent itemset extraction time

Fig. 8. Itemset extraction time with both time and support constraints:
T25I300D6M

actually stored in the same (disk) block, thus reducing the I/O cost. When
lower supports are considered, weakly correlated items are analyzed. These
items are naturally represented in disjoint index paths.

For the configuration Dataset-100+100, the run time for frequent itemset
extraction is higher than for all the other configurations. Recall that Dataset-
100 + 100 is obtained by cloning the original dataset. Hence, to retrieve the
index data, the number of disk accesses is doubled with respect to the config-
uration Dataset-100.

We ran experiments to evaluate the performance of itemset extraction
when enforcing both time and support constraints. Experiments have been
run on the (large) synthetic dataset T25I300D6M partitioned in 12 blocks.
We considered six different time constraints, with increasing number of blocks
to be mined (Ω lists the blocks to be mined). For each time constraint, Fig. 8
reports the run time in itemset extraction by varying the support thresholds.
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The extraction time grows almost linearly with the number of analyzed
blocks. The increase is mainly due to the cost for accessing data in different
index blocks. The increment is more evident for lower supports. Being the
original dataset sparse, most of the items have a low frequency. Hence, a
large amount of data has to be retrieved when lower support thresholds are
considered.

5.3 Memory Consumption

We compared the memory consumption2 of our approach with the Prefix-
Tree algorithm on flat file. We report the average memory (Fig. 9a) and the
total memory (Fig. 9b) required during the extraction process. For the I-Forest
index the buffer cache of the DBMS is included in the memory held by the
current process. The Kosarak dataset is discussed as a representative example.

Figure 9a shows that Prefix-Tree, on average, needs a significantly larger
amount of memory than our index based approach. It also requires an amount
of overall memory (Fig. 9b) smaller than I-Forest only for high support values.

The I-Forest index allows the extraction algorithm to selectively load in
memory only the data required for the current execution phase. Hence, both
average and total required memory may become significantly smaller than
that required by Prefix-Tree which stores the entire data structure in memory
for the whole extraction process. For this reason, a larger memory space is
available for the I-Forest extraction process, thus reducing the occurrence of
memory swaps. Furthermore, since the size of PostgreSQL DBMS buffer cache
is kept constant, global and average memory requirements of our approach are
rather stable with decreasing support thresholds.

(a) Average main memory (b) Total main memory

Fig. 9. Memory usage for Kosarak dataset

2 The amount of memory required by the extraction process is read from
file/proc/PID/mem (memory held by the PID process).
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(a) Kosarak-25+25+25+25 (b) Kosarak-100+100

Fig. 10. Buffer cache and hit rate for Kosarak dataset

5.4 Buffer Cache Size

The hit rate is the ratio between the number of hits (accessed blocks already
available in the buffer cache) and the total number of accesses to index blocks.
In case of hit, there is no overhead caused by accessing data on disk. Hence,
the I/O cost decreases when the hit rate increases.

Figure 10 shows the hit rate when accessing the PostgreSQL buffer cache
during the extraction process for two different configurations of the Kosarak
dataset. With the default size of the buffer cache (i.e., 64 blocks) the hit rate is
quite high even when the extraction is performed with low support thresholds.
When increasing the buffer cache size, the hit rate grows by about 0.5%. On
the other hand, when the buffer cache size is increased, the performance of
the extraction process slightly decreases (e.g., when the buffer cache is 512
blocks the CPU time required for the extraction process increases by about
4%). In this case, the decrease in I/O cost is counterbalanced by a decrease
in the memory space available for the extraction algorithm.

6 Related Work

Incremental frequent pattern mining is a relevant issue in many real-life con-
texts. Incoming data may arrive as (i) single transactions [7] or (ii) transaction
blocks [3,8,12,13]. In the latter case, a set of transactions is added to the data-
base at the same time. Hence, the data model is called block evolution [13].
The I-Forest index structure addresses the extraction of frequent itemsets
in this last context. Hence, it may be straightforwardly integrated into the
framework proposed in [13].

Works in [3, 8, 12, 13, 21] address incremental frequent itemset extraction
under block evolution. The FUP [8] algorithm, based on the Apriori [1] ap-
proach, requires a large number of database scans. It has been improved by
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BORDERS [3], based on the notion of border sets (a set X is a border set if all
its proper subsets are frequent sets but X itself is not). Border sets allow an ef-
ficient detection of new frequent sets, thus reducing the number of candidates
to count and database scans. This algorithm stores the set of frequent itemsets
and updates them when new data arrive. Hence, a large solution set has to
be stored. Furthermore, updating the solution set may require to re-scan the
whole dataset. To deal with smaller solution sets, [21] stores only the maximal
itemsets, while [9] maintains the set of closed itemsets. The BORDERS ap-
proach has been improved by the ECUT (Efficient Counting Using TID-lists)
algorithm [12]. To count the support of itemsets, ECUT retrieves only the
relevant portion of the dataset by means of the TID-lists of 1-itemsets. The
ECUT+ algorithm, also proposed in [12], materializes the TID list for itemsets
with size greater than one. The number of itemsets may be very large. The
heuristic solution proposed in ECUT+ is the materialization of the TID-lists
of 1-itemset and 2-itemsets only. This technique improves performance with
respect to ECUT, but it requires more disk space.

A different incremental technique is based on arbitrary insertions and dele-
tions of single transactions. In this scenario, [7] proposed an extension of the
FP-Tree [16], where each new transaction is inserted in the existing tree by
means of a heuristic approach without exploring the whole tree. However, af-
ter several insertions the updated structure is not as compact and efficient as
the corresponding FP-tree.

The I-Forest index provides a compact structure to store all information
potentially required by the mining process. Furthermore, it allows selective
access to this information. Hence, differently from the above approaches, it
provides a flexible framework in which different types of analysis (e.g., mining
only a subset of interesting blocks) can be performed. Many algorithms have
been proposed to perform the computationally intensive knowledge extraction
task over static databases [1, 15, 16, 18]. Since the required memory increases
significantly, memory based approaches are not suitable for mining sequences
of incoming data blocks. In this context, disk based approaches [4, 10,20] are
more suitable for the itemset extraction task. They exploit clever data struc-
tures to summarize the (static) database on disk. Efficient itemset extraction
takes place on these ad-hoc data structures. [20] proposes B + tree based
indexes to access data stored by means of either a vertical or a horizontal
data representation, while [10] represents the dataset by means of an Inverted
Matrix stored on disk, which is mined to extract frequent itemsets. [4] pro-
poses an index structure, called I-Tree, to tightly integrate frequent itemset
mining in PostgreSQL open source DBMS. However, the I-Tree index cannot
be incrementally maintained. We exploit the I-Tree as a building block of
our approach. The I-Forest index allows both incremental mining of evolving
databases and smooth data evolution.
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7 Conclusions and Future Work

The I-Forest is a new index structure suitable for itemset extraction from
databases collections, which evolve over time through periodical insertion (or
deletion) of data blocks. An algorithm to efficiently extract itemsets by ex-
ploiting the proposed index structure has been presented. Time and support
constraints may be enforced to drive the extraction process. Primitives for in-
dex creation and itemset extraction have been integrated in the kernel of the
PostgreSQL DBMS [19]. Experiments have been run for both sparse and dense
data distributions. The experimental results show that itemset mining based
on the I-Forest index is efficient both in terms of extraction time and mem-
ory usage. The performance of the proposed approach is always comparable
with and for low support thresholds faster than the Prefix-Tree algorithm [11]
(FIMI ’03 best implementation), accessing static data on flat file.

As further extensions of this work, the following issues may be addressed:
(i) Compact structures suitable for different data distribution. Currently, we
adopted the I-Tree structure to uniformly represent all IF-blocks. Since incom-
ing data blocks are stored on disk in independent structures, different compact
structures suitable for the data distribution of each block may be exploited
to optimize disk space and reduce the I/O cost. As future work we plan to in-
clude data structures appropriate for sparser data distributions (e.g., Patricia-
Trie [18] and Inverted Matrix [10]). (ii) Item constrained extraction. Currently,
the proposed algorithm based on the I-Forest index is able to extract itemsets
enforcing time and support constraints. Another interesting analysis can be
performed by extracting only itemsets including a selected subset of interest-
ing items. (iii) Integration with a mining language. The proposed primitives,
currently integrated into the kernel of the PostgreSQL DBMS, may be inte-
grated with a query language for specifying mining requests. These low-level
primitives can contribute an efficient database implementation of the basic
extraction statements of the query language.
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Summary. We investigate the problem of calculating likelihoods in Bayesian net-
works. This is highly relevant to the issue of explanation in such networks and is in
many ways complementary to the MAP approach which searches for the explana-
tion that is most probable given evidence. Likelihoods are also of general statistical
interest and can be useful if the value of a particular variable is to be maximized.
After looking at the simple case where only parents of nodes are considered in the
explanation set, we go on to look at tree-structured networks and then at a general
approach for obtaining likelihoods.

1 Introduction

In many scenarios human reasoning seems to involve producing adequate
explanations of the phenomena under consideration. In many artificial in-
telligence applications, however, reasoning and inference can be carried out
without any explicit account of explanation. This naturally raises the ques-
tion as to how explanations can be extracted from such applications. This is
crucial if users are to trust the reliability of the inferences made. In proba-
bilistic systems, for example, users often find it difficult to make sense of the
reasoning process unless suitable explanations are available. Unfortunately,
providing an adequate account of explanation, which would be required for
the automatic generation of explanations, is a notoriously difficult problem.

There has been considerable interest in how explanations can be obtained
from Bayesian networks [1–8]. There are a number of reasons why Bayesian
networks provide a suitable environment for finding explanations. First of all,
if the structure of a network is interpreted causally then it immediately gives
a framework for locating the causes (or potential causes) of particular events
(or facts) which is particularly important given that causality is often taken
to be a key ingredient in explanation [6, 9]. Bayesian networks also provide
an obvious framework for studying statistical explanations and for ordering
explanations in terms of probability.
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Intelligence (SCI) 109, 325–341 (2008)
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The foregoing discussion raises two important questions. First of all, which
nodes in a Bayesian network should be included in the explanation? Should
it be all the nodes in the network, or the ancestors of the evidence nodes, or
a subset of the ancestors? While a full discussion of explanation in Bayesian
networks is beyond the scope of this paper, it is worth noting that other re-
searchers have addressed many of these issues or closely related topics (see for
example [3–6]). Second, how should probability be used to order explanations
in Bayesian networks? The main answer to this question is the Maximum A
Posteriori (MAP) approach, which finds the explanation that is most prob-
able given the evidence [1, 3, 5]. Nevertheless, this approach has been criti-
cized [6, 10]. One difficulty is that the MAP approach can yield as the best
explanation one which is negatively related to the evidence and so lowers the
probability of the evidence – it is most probable in virtue of its high prior
probability.

This paper considers an alternative approach. Rather than calculating
the probability of an explanation given the evidence, we investigate ways
to calculate the likelihood of possible explanations, i.e. the probability of the
evidence given the explanation. As a result we also wish to find the explanation
of maximum likelihood. The purpose of the paper is not to argue that this
is a better approach than the MAP approach since this approach also has
problems. Nevertheless, it is of interest to calculate likelihoods since they are
certainly relevant to the concept of explanation and complementary to MAP.
Likelihoods also provide statistical information that is generally of interest in
investigation of data and can give important information about how a certain
state of affairs can be brought about with high probability (provided the
network can be interpreted causally).

The structure of the rest of the paper is as follows. In Sect. 2 we present
some background information and discussion about the problem. In Sect. 3
we consider the simplest case where only the parents of the evidence nodes
are considered in the explanation. Section 4 looks at calculating likelihoods
in trees and Sect. 5 investigates a general approach. Preliminary results are
presented in Sect. 6 and conclusions in Sect. 7.

2 Preliminaries

2.1 Bayesian Networks

Suppose V is set of nodes with each node v ∈ V representing a random
variable Xv. A Bayesian network [1,11–13] consists of a directed acyclic graph
(DAG) together with a probability distribution which satisfies the Markov
condition with respect to the DAG so that each variable Xv is conditionally
independent of its non-descendents given its parents Xpa(v) in the DAG. If
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the conditional probability distribution for each node is given by P (xv|xpa(v)),
the joint probability distribution can be written as,

P (x) =
∏
v∈V

P (xv|xpa(v)). (1)

In this paper only discrete variables are considered.
We now define some of the terminology that will be used in this paper

(see [12,13] for further details). A sequence of nodes [v0, v1, . . ., vm] is a chain
between v0 and vm if there is a directed edge from vi to vi+1 or from vi+1 to vi

for i = 0, . . .,m−1. A chain between v0 and vm is a directed path from v0 to vm

if there is a directed edge from vi to vi+1 for i = 0, . . .,m−1. v0 is an ancestor
of vm if there is a directed path from v0 to vm. A tree is a network in which each
node has at most one parent and there is only one node with no parents (the
root node). A singly connected network has at most one chain between each
pair of nodes. If there is more than one chain between any pair of nodes the
network is multiply connected. We will also refer to the notion of d-separation
which enables us to identify all the conditional independencies entailed by the
Markov condition. The reader is referred to [1] for a definition and to [13] for
an alternative method to identify the conditional independencies.

2.2 Definition of Problem

The basic problem to be addressed in this paper is to determine the probability
of a specified configuration of a set of variables, XT , which we shall refer to
as the target set, given the possible configurations of a set of variables, XE ,
which we shall refer to as the explanation set. We will denote the specified
configuration of the target set as xT and the configurations of the explanation
set as xE . Thus, we wish to calculate P (xT |xE). We also wish to find the
configuration of maximum likelihood, i.e. the configuration of the target set
that maximizes the probability of the target configuration. Formally, we wish
to find the configuration x∗

E of XE such that,

x∗
E = arg max

xE

P (xT |xE). (2)

2.3 Discussion of Problem

At first glance the problem appears to be similar to standard inferences carried
out in Bayesian networks. For example, suppose evidence is entered for nodes
in the network. An inference can then be performed to obtain the marginal
probability of a variable given the evidence. One problem is that we wish
to find the likelihood for all configurations of the explanation set. A simple
approach would be to adapt standard inference algorithms so that they per-
form an inference for each configuration, but it should be possible to develop
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more efficient approaches. Furthermore, in the problem being considered,
conditioning on the explanation set results in a loss of the factorizability of
the function and so makes inference more demanding. Nevertheless, there are
strong similarities with work on obtaining MAP explanations as will become
clear in Sect. 5.

3 Likelihood of Parents

3.1 Explanations

3.1.1 All parents in the Explanation Eet

The simplest case occurs when the explanatory variables XE are the parents
of the target variables XT . If XT consists of just a single node Xt the de-
sired configuration x∗

E can be obtained by simple inspection of the conditional
probability distribution P (xt|xpa(t)). Furthermore, if XE contains Xpa(t) as a
proper subset and is confined to ancestors of Xt, then variables in XE\Xpa(t)

have no effect on Xt due to the Markov condition. In this case it only makes
sense to consider the projection of xE on xpa(t), in which case the maximum
configuration is again found by inspection of the conditional distribution.

We now consider a more general case where XT contains multiple nodes
and is given by XT = {Xt1, . . .Xtm} with the explanation set consisting of the
parents of these nodes, i.e. XE = Xpa(T ) = {Xpa(t1), . . .Xpa(tm)}. At this stage
we consider only cases where no node in XT has a parent which is a descendent
of another node in XT since we are considering cases where the explanation
set only contains ancestors of variables in the target set. We also restrict the
explanation set so that it only contains nodes not found in the target set, i.e.
XE is replaced by XER = XE\XT . The likelihood of a configuration x∗

ER is
given by,

P (xT |xER) =
∏
i∈T

P (xi|xT
pa(i)), (3)

where xT
pa(i) is the configuration of the variables Xpa(i) with any variable

found in XT constrained to take on the value specified in xT . One way to
find the configuration of maximum likelihood x∗

ER would be to calculate the
product in (3) for all possible configurations of xER, but fortunately a more
efficient approach can be found. Suppose the set of nodes T is partitioned into
k groups of nodes {T1, . . ., Tk} such that a node found in one group does not
share any parents with any nodes except those in its own group. In order to
obtain x∗

ER we can now consider the components corresponding to the parents
of each group separately. If we denote the projection of x∗

ER onto the parents
of group Tj as x∗

ER,j , we obtain for each j,

x∗
ER,j = arg max

xT
pa(j)

∏
i∈Tj

P (xi|xT
pa(i)). (4)
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G

Fig. 1. The DAG for the Bayesian network considered in example 1

Example 1. Consider the Bayesian network whose DAG is shown in Fig. 1 and
consider the target set T = {B,E,G} with the configuration (b1, e1, g1). We
note that the target set can be partitioned as T = {B} ∪ {E,G} so that the
parents of the nodes in each partition are distinct. Since the explanation set
will then be {A,D,F} we can obtain the configuration of maximum likelihood
by selecting the value ai of A which maximizes P (b1|ai) and the values dj and
fk of D and F which maximize P (e1|dj , fk)× P (g1|e1, fk).

3.1.2 Subset of Parents in Explanation Set

When the explanation set consists of a proper subset of the set of parents
of the target set, XE ⊂ Xpa(T ), things are less straightforward since the
likelihood cannot be obtained by simply taking the product obtained from
the relevant conditional probability tables. Part of the motivation for looking
at this problem is that it raises some of the issues that will be important later
in the paper. In fact, the most general solution to this problem will require
the methods proposed in Sect. 5.

To illustrate the general idea we consider three scenarios, shown in Fig. 2,
wherethere is only one node in the target set, node C, and two parent nodes A
and B, only one of which is in the explanation set, node A. Thus, supposing
C to have value c1, we wish to calculate P (c1|ai). In the first scenario we
consider the simple network shown in Fig. 2a, for which the desired likelihood
can be expressed as,

P (c1|ai) =
∑

j

P (c1|ai, bj)P (bj). (5)

Thus, we must marginalize out B, which is simple in this case because B has
no parents and is marginally independent of A. Scenario two, shown in Fig. 2b,
is only slightly more complicated since A and B have one parent each. The
desired likelihood for this network can be expressed as,

P (c1|ai) =
∑
jk

P (c1|ai, bj)P (bj |dk)P (dk). (6)

B is marginally independent of A as in the first scenario, but this time B has
a parent D which must also be marginalized out. Note that E is not involved
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(a) (b) (c)

Fig. 2. Three scenarios in which the target set is {C} and the explanation set is {A}

in the calculation. Note also that marginalizing out D gives the probability of
B and so once this has been done the right hand side of (6) becomes the same
as the right hand side of (5). Thus, if the marginal probabilities for each node
have already been obtained scenario two becomes equivalent to scenario one.

Scenario three involves the multiply connected network shown in Fig. 2c,
which has an additional directed edge from node D to node A. In this case
the desired likelihood can be expressed as,

P (c1|ai) =
P (c1, ai)
P (ai)

=

∑
jkl

P (el)P (dk)P (ai|el, dk)P (bj |dk)P (c1|ai, bj)∑
kl

P (el)P (dk)P (ai|el, dk)
. (7)

Clearly, the solution for scenario three is much more complex since B is no
longer marginally independent of A, but only conditionally independent of A
given D. In scenario two E could be excluded because it was conditionally in-
dependent of C given A, or to put this in different terminology, A d-separated
E and C. But this does not hold in scenario three since although the chain
E-A-C is blocked by A, the chain E-A-D-B-C is not. More generally, for singly
connected networks any ancestors of nodes in the explanation set can be ex-
cluded from the calculation since they are d-separated from the target nodes
by the nodes in the explanation set, while no such result holds for multiply
connected networks.

It is also clear that marginalization only needs to be carried out for nodes
which are ancestors of the nodes in the target set. (This can be seen by noting
that the likelihood can be expressed as the joint probability of the target and
explanation nodes divided by the joint probability of the explanation nodes,
which involve only ancestors of the nodes in question.) In effect this means
that calculating likelihoods when only parents of target nodes are included in
the explanation set can be carried out on a subset of the initial network. This
is because only ancestors of target nodes need to be taken into account and,
furthermore, any of these ancestors which are d-separated from the target set
by the explanation set can also be excluded.
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3.2 Interventions

The approach described Sect. 3.1.1 applies to the case where the target set
is found to be in a particular configuration and we wish to know what con-
figuration of the explanation set would have the highest likelihood. If the
Bayesian network represents casual relationships between variables, it also
applies to the case where we wish to know what intervention on the variables
in the explanation set would make the target configuration most probable.
Furthermore, the restriction that no node in the target set should have a par-
ent which is a descendent of another node in the target set can be lifted in
this case. The reason for this is that intervention is different from observa-
tion and in effect involves removing from the DAG arrows coming into the
node where the intervention occurs. This is the basic idea underlying Pearl’s
do-calculus [2].

Example 2. Consider the Bayesian network whose DAG is given in Fig. 3a
and consider the target set T = {B,D} with configuration (b1, d1). If this
configuration is observed and we wish to know what configuration of the
explanation set {A,C} has the highest likelihood, the approach described in
Sect. 3.1.1 will fail since the value of C will have an effect on B as well as
D. However, if instead of observing the target configuration, we wish to know
what intervention on the explanation set will make the target configuration
most probable, the method will work since intervening on C will have no effect
on B. In effect, the intervention amounts to replacing the DAG in Fig. 3a
by that in Fig. 3b. From Fig. 3b it is clear that the approach described in
Sect. 3.1.1 is now applicable.

A

B

C

D

A

B

C

D

(a) (b)

Fig. 3. DAGs considered in example 2
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4 Likelihoods in Trees

4.1 Explanations

Consider again the DAG shown in Fig. 3a. Suppose now that we wish to find
the likelihood of an ancestor, but not necessarily a parent, of a given node.
Suppose, for example, that we wish to find P (d1|ai) for each value of i. This
can be obtained as follows,

P (d1|ai) =
∑
j,k

P (bj |ai)P (ck|bj)P (d1|ck). (8)

To illustrate how this can be calculated efficiently consider the junction tree
representation of the DAG, as shown in Fig. 4. (It is not necessary to use
the junction tree approach for this problem and, in fact, an approach such
as Pearl’s message-passing [1] might be more appropriate in this case. Junc-
tion trees are used as they will also be considered later in the paper. For a
full discussion of this approach see [13, 14]). The potential functions will be
initialized as follows,

φAB = P (A)P (B|A),
φBC = P (C|B), (9)
φCD = P (D|C).

P (d1, ai) can be obtained for each i by setting the value of D to d1, passing
sum-flows from clique CCD to CAB , and then marginalizing out B. P (d1|ai)
can then be obtained by dividing P (d1, ai) by P (ai) for each i. If A is not a
root node in the network, this last step is not required.

It is worth noting that this approach is more efficient than an alternative
approach, which involves setting the value of A to ai and then finding P (d1|ai)
by propagating sum-flows from CAB to CCD. This is just the standard way
of updating in a Bayesian network, but in this case it needs to be repeated
for each value of i. In general, to perform this type of operation along a chain
requires O(n3) operations, where n is the number of possible values of the
variables, compared to O(n2) for the method described above.

Suppose we now consider the tree-structured DAG shown in Fig. 5 and
wish to obtain P (c1, e1|ai) for each value of i. This can be written as,

P (c1, e1|ai) =
∑

j

P (c1|bj)P (bj |ai)
∑

k

P (e1|dk)P (dk|ai) (10)

AB BC CD

Fig. 4. The Junction Tree for the DAG in Fig. 3a
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A

D

EC

B

Fig. 5. A tree-structured DAG

and so, as before, the relevant summations can be carried out on the corre-
sponding branches of the tree independently and collected at A.

It is now clear how this approach can be generalized to treat the case
where the target set contains nodes in separate sub-branches of a tree and
the explanation set contains an ancestor of each node in the target set and no
descendents of nodes in the target set. The following steps should be taken
in order to obtain the probability of the specified target configuration given
each configuration of the explanation set:

Step 1 : Any node in the explanation set that is blocked from all nodes in
the target set by other nodes in the explanation set is irrelevant to the
likelihood and can be removed from the explanation set.

Step 2 : The junction tree is created and initialized and evidence is entered
for each clique containing a node in the target set and its parent, i.e. the
values of the clique potential that do not correspond to the value in the
target configuration are set to zero.

Step 3 : From each clique identified in step 2 sum-flows are passed up the
tree until they reach a clique containing a node in the explanation set.

Step 4 : For each clique that receives a sum-flow in step 3 the variable not
contained in the explanation set is marginalized out of the clique potential.

Step 5 : The likelihood can then be obtained for each configuration of the
explanation set by multiplying the corresponding values for each clique
potential receiving a sum-flow in step 3. The result should be divided by
the prior probability of the root node if it is contained in the explanation
set (and has not been ruled out in step 1).

4.2 Interventions

Returning to Fig. 5, suppose we wish to obtain P (c1, e1|bi) for each value
of i. Although the explanation set {B} only contains ancestors of nodes in
the target set {C,E}, we cannot obtain likelihoods (and in particular the
maximum likelihood) by considering the influence of B on its child node C.
This is because B and E are not independent of each other. However, as
discussed in the previous section, if we are considering interventions we can
focus on B’s influence on C since the arrow between A and B will be removed
and B and E will be rendered independent.
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The procedure outlined above for calculating likelihoods applies to inter-
ventions as well as explanations, but in the case of interventions the restriction
that the explanation set contain an ancestor of each node in the target set
can be lifted. In this case the likelihood can be obtained in the same way
except that in step 2, cliques should only be identified where the node in the
target set has an ancestor in the explanation set. (Strictly speaking the result
will not be the likelihood but the likelihood divided by the probability of the
projection of the target configuration on variables without ancestors in the
explanation set. This is just a constant factor, however, and will still permit
an ordering of configurations in terms of their likelihoods.)

4.3 The Influence of Descendents

So far we have considered ancestor nodes in the explanation set, but here we
consider how descendents in the explanation set can be treated as a prelude
to tackling the general case in the next section. Consider the Bayesian net-
work possessing the DAG shown in Fig. 5, but now consider the explanation
set {B,D} and the target set {A} with target configuration a1. Thus, we
wish to obtain P (a1|bi, dj) for each (i, j) pair. The general expression can be
written as,

P (a1|bi, dj) =
P (a1)P (bi|a1)P (dj |a1)∑

k

P (ak)P (bi|ak)P (dj |ak)
. (11)

Note that the denominator in (11) cannot be factorized as was possible in
(10) and so the variables A, B and D must all be considered together in
this case. The problem only gets worse if {C,E} is the explanation set. This
case highlights a significant problem for calculating likelihoods and will be
considered again in the next section.

Suppose that instead we consider the explanation set {B} so that we now
wish to obtain P (a1|bi) for each value of i. This can be written as,

P (a1|bi) =
P (a1)P (bi|a1)∑

k

P (ak)P (bi|ak)
. (12)

Although this is a simple expression it does highlight the important point that
if B is the only node in the explanation set, the other children of A do not
need to be taken into account. Of course it does require prior probabilities to
be calculated, a point which will be considered again in the next section.

The general point being made here is well-known, but it is worth empha-
sizing in this context because of its relevance for calculating likelihoods in
Bayesian networks. An example illustrates the point. Suppose the relation-
ship between the presence or absence of a disease and the results of various
diagnostic tests can be represented by a Bayesian network such as that in
Fig. 5 where A is the disease and B, D and perhaps other child nodes of A
represent the result of various tests. A relevant consideration in the choice of
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which test should be performed first is the probability that the person has the
disease given that the test result is positive and of course this can be calcu-
lated for each test independently. The relevance for calculation of likelihoods
is that this extends to tree structures more generally where the probability of
a configuration of a target node given the configurations of one or more of its
descendents is required.

5 Likelihoods in a General Bayesian Network

So far we have considered various restrictions either in terms of the network
being considered or the nodes to be included in the explanation set (e.g.
parents of target nodes). In this section we remove these restrictions to con-
sider Bayesian networks in general. First, we consider the most general case
in which any set of non-target nodes can be included in the explanation set.
We then look briefly at the case where all non-target nodes are included in
the explanation set, which we refer to as a complete explanation.

5.1 The General Case

In Sect. 4.3 when considering likelihoods in the case where the explanation set
contains descendents of the target set, we were effectively using the following
expression to obtain the likelihood,

P (xT |xE) =
P (xT , xE)

P (xE)
. (13)

Furthermore, the procedure discussed in Sect. 4.1 in the calculation of P (d1|ai)
as found in Fig. 3a involved first of all calculating P (d1, ai) and then dividing
by P (ai). This is very similar to what normally happens in inference problems
in Bayesian networks. A typical problem would be to calculate the marginal
distribution for a node given some evidence elsewhere in the network. For
example, suppose that given the DAG in Fig. 3a we wished to calculate the
marginal distribution for A given evidence d1 for node D. The procedure
outlined in Sect. 4.1 could be used to obtain P (d1, ai) and then normalization
used to obtain P (ai|d1). Thus, it would seem feasible to obtain likelihoods
in Bayesian networks by using (13) and so performing two inferences in the
network, one to obtain the numerator and one to obtain the denominator.

The difficulty is that obtaining a marginal distribution for a subset of
nodes in a Bayesian network is not straightforward in the general case. The
reason for this is that in general the factorization which applies to the joint
distribution for all variables does not apply to a subset of them. For example,
suppose we consider the denominator in (11) again. This expression does not
factorize on the junction tree representation of the DAG in Fig. 5. If we wish
to compute the marginal distribution for a set of variables which are all con-
tained within one clique of the junction tree, the problem is straightforward.
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Once equilibrium has been reached by passing active flows in both directions
between each pair of cliques in the junction tree, each clique contains the
joint probability distribution for the variables it contains. The desired mar-
ginal probability is then obtained by marginalizing out variables that are not
in the required set.

This problem has been investigated by Xu [15] and, in the context of
obtaining the Maximum A Posteriori (MAP) hypothesis, by Nilsson [16] for
example. The MAP problem is similar to the current problem since it involves
finding the most probable configuration of a subset of nodes in a network given
evidence about other nodes in the network. A special case of this problem is to
find the maximum configuration of all nodes for which evidence has not been
provided. This special case has been dealt with in [16, 17]. The more general
MAP problem, however, is more relevant here since it involves a function
which does not factorize over the junction tree.

Since the MAP problem involves maximizing the numerator in (13) we can
adopt approaches used for it to obtain the likelihoods. The basic idea is to
merge relevant cliques in the junction tree so that all the nodes in explanation
set are contained within a subtree of the junction tree to ensure that the both
the numerator and denominator in (13) factorize over the modified junction
tree. A standard propagation algorithm can then be applied. This process
should be carried out twice, once without any evidence being entered and
once with the target configuration being entered as evidence, to obtain the
denominator and numerator respectively.

Following [18] we summarize the Xu-Nilsson algorithm for modifying the
junction tree as follows:

Step 1 : Identify the smallest subtree J ′ of the junction tree J that contains
the variables of the explanation set XE .

Step 2 : Pass sum-flows from the rest of the cliques to J ′.
Step 3 : Select two neighbouring cliques Ci and Cj in J ′ and merge them

into a new clique Cij by deleting variables that do not belong to XE and
updating the clique potential using the following expression,

ϕ(Cij) =
∑

Ci∪Cj\Cij

ϕ(Ci)ϕ(Cj)
ϕ(Sij)

(14)

Repeat step 3 until J ′ contains only variables in XE .

This approach can then be applied to obtain both the numerator and
denominator in (13) and, by calculating the relevant ratios, the desired like-
lihood can be obtained.

As a simple example consider again the Bayesian network shown in Fig. 5
and for which the junction tree is shown in Fig. 6. Suppose now that we wish
to calculate P (a1|ci, dj) for each (i, j) pair. Since the nodes C and D are in
the explanation set we must merge nodes until the variables A and B can be
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CB BA AD DE

Fig. 6. A junction tree for the DAG shown in Fig. 5

removed from the subtree CB-BA-AD. First, merge CB and BA to obtain the
new node CA and then merge it with AD to obtain CD.

Most inference problems in Bayesian networks are known to be NP-hard
[19] and, in fact, the approach used here is more demanding even than MAP
since it is performing an MAP inference twice. Things are not quite this bad,
however, since savings can be made. For example, sum-flows from cliques not
involving variables in the target set do not have to be performed in the second
inference problem. Furthermore, the problem will be straightforward in some
scenarios, such as when all the explanatory nodes are in the same clique.

5.2 Complete Explanation Sets

Suppose we consider a general Bayesian network as in Sect. 5.1, but now con-
sider a complete explanation set consisting of all the non-target nodes in the
network. From Sect. 3.1 we know that explanatory nodes can become redun-
dant. For example, if there is just a single target node XT and all of its parents
are in the explanation set, then all other ancestors of XT are redundant since
they are d-separated from XT by its parents. More generally, if we can specify
a set of nodes that d-separates the target set from the rest of the network, the
remaining nodes become redundant. Suppose T represents the set of target
nodes and M the set of nodes d-separating T from the remaining nodes R.
Since the nodes in T will be independent of those in R conditional on those
in M , changing the value of a node in R can have no effect on the value of
nodes in T once the values in M have been specified. Hence, in calculating
the likelihood we do not need to consider nodes in R.

It is well known that the set of nodes d-separating a node A from the
rest of the network is the Markov blanket of A, denoted bl(A), consisting of
the parents of A, the children of A and the parents of the children of A [13].
By taking the union of the Markov blankets of all the nodes in the target
set we can d-separate it from the rest of the network. Hence, suppose our
target set is XT = {Xt1,. . .Xtm} and the explanation set XE consists of all
the remaining nodes in the network, then all the nodes in XE \∩i=1,m bl(Xti)
will be redundant. Although finding likelihoods for complete explanations can
be obtained by the general approach outlined in Sect. 5.1, the considerations
noted here can improve the efficiency of the calculation. We will consider an
example of this in Sect. 6.
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6 Results

Preliminary results are presented by considering two examples from the much
discussed ASIA network as found in [14]. The network contains eight binary
nodes as follows: A – Asia visit; T – Tuberculosis; L – Lung cancer; E – Either
tuberculosis or lung cancer; S – Smoker; B – Bronchitis; D – Dyspnoea; X –
X-ray. The Bayesian network is multiply connected containing two chains from
S to D (S → B → D and S → L → E → D). The network is presented in
Fig. 7 and a corresponding junction tree for the network, presented in [16], is
given in Fig. 8.

Suppose we consider the target configuration to be a positive X-ray result
(X = x1) and the explanation set to be Lung cancer and Dyspnoea. In other
words, we wish to obtain the probabilities P (x1|li, dj) for all values of i and
j. We note that L is an ancestor of X, but D is neither an ancestor nor a
descendent of X. Nevertheless, it is neither marginally independent of X nor
conditionally independent of X given L and so knowledge of the value of D
can affect the probability of X.

First of all, we identify the subtree containing the nodes in the explanation
set, i.e. (BEL – BDE ). Then, we pass sum-flows from the peripheral nodes to
BEL and then marginalize out B and E to obtain P (li, dj). We then repeat
this procedure only now we incorporate the target configuration (X = x1) as
evidence.

The results obtained by considering the MAP and likelihood calculations
reveal their complementary nature. The MAP calculation reveals that having

S

B L

E

XD

T

A

Fig. 7. The Asia network [13]

AT

ELT

BLS

BEL

BDEEX

Fig. 8. A junction tree for the Asia network (adapted from [15])



www.manaraa.com

Likelihoods and Explanations in Bayesian Networks 339

neither Lung cancer nor Dyspnoea is the most probable explanation for the
positive X-ray result. This is due to the fact that since Lung cancer is rela-
tively rare the positive X-ray result can be accounted for by its false positive
rate. Having both Lung cancer and Dyspnoea is the second most probable
explanation. The results for the likelihood calculation are given in Table 1.

Note that in contrast to the MAP result the likelihood is equally high for
Lung cancer irrespective of whether Dyspnoea is present or not. This is an
artifact of the odd nature of the E variable since it is a logical variable taking
on the logical OR of the L and T variables. Nevertheless, if Lung cancer is
absent the presence of Dyspnoea does make the positive X-ray result more
likely. This is due to the fact that if Lung cancer is absent, the presence of
Dyspnoea makes the presence of Tuberculosis slightly more likely and hence
also raises the probability of a positive X-ray result.

In our second calculation we consider the target configuration to be
Bronchitis (B = b1) and the explanation set to be the remaining nodes in
the network. We note that in this network Smoking (S), Dyspnoea (D) and
Either lung cancer or tuberculosis (E) form the Markov blanket of Bronchitis
(B) and so all the other nodes in the network become redundant. In other
words, we wish to obtain the probabilities P (b1|si, dj , ek) for all values of i, j
and k. While we could proceed as in the previous case using the entire junction
tree, in this case we can instead remove all the other nodes from the original
Bayesian network and construct a junction tree for the remaining network.
(Note that node E would now have no parents in this modified network and
that there is no need to specify its prior probability as it does not enter the
calculation of likelihoods.) The simplified junction tree is presented in Fig. 9.

Proceeding as before on the modified junction tree we obtain the results
shown in Table 2. Note that in cases where Dyspnoea is present the probability

Table 1. Results for the Asia Network

P (X = x1|L, D)

L = l1 D = d1 0.98
L = l1 D = d2 0.98
L = l2 D = d1 0.068
L = l2 D = d2 0.056

X = x1 denotes a positive X-ray result, L = l1(l2) denotes the presence (absence) of
Lung cancer variable and D = d1(d2) denotes the presence (absence) of Dyspnoea

BS BDE

Fig. 9. The junction tree formed from the modified network consisting of just the
nodes for Smoking (S), Bronchitis (B), Dyspnoea (D) and Either lung cancer or
tuberculosis (E)
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Table 2. Results for the Asia network when Bronchitis (B) is the only node in the
target set and the only non-redundant nodes in the explanation set are Smoking
(S), Dyspnoea (D) and Either lung cancer or tuberculosis (E)

P (B = b1|S, D, E)

S = s1 D = d1 E = e1 0.68
S = s1 D = d1 E = e2 0.90
S = s1 D = d2 E = e1 0.47
S = s1 D = d2 E = e2 0.40
S = s2 D = d1 E = e1 0.35
S = s2 D = d1 E = e2 0.72
S = s2 D = d2 E = e1 0.20
S = s2 D = d2 E = e2 0.16

of Bronchitis is higher when both lung cancer and tuberculosis are absent than
when one of them is present. This is due to the fact that either lung cancer
or tuberculosis would explain away Dyspnoea. In fact, this gives rise to the
fact that the second highest likelihood is obtained when the person does not
smoke, but Dyspnoea is present while lung cancer and tuberculosis are not.

7 Conclusions

We have carried out a preliminary investigation into the calculation of likeli-
hoods in a Bayesian network. A number of motivations have been proposed
for this work and some discussion has been given of the relationship between
likelihoods, explanation and intervention. We have looked at cases where the
explanation set is restricted to parents of the nodes in the target set and
also presented a procedure to obtain likelihoods in a tree-structured Bayesian
network when the explanation set is restricted to ancestors of the target set.
We have also explored a general procedure for obtaining the likelihood in a
Bayesian network irrespective of whether the explanation set contains ances-
tors or descendents of the nodes in the target set.

There are numerous directions for future work. First of all, more calcula-
tions need to be performed to illustrate the merits and potential applications
of the work. Some suggestions have been made as to how the procedure could
be made more efficient and so these should be investigated. Furthermore, in
certain cases alternative procedures will certainly be more efficient and so
extension of the approaches adopted in Sect. 4 and Sect. 5.2 could also be
investigated. The link between this work and algorithms for MAP emphasizes
the need to investigate approximation methods. Work on the MAP problem
(see for example [20,21]) suggests how this could proceed. Thus, although this
work is preliminary in nature it does open up new directions for the solution
of a challenging inference problem in Bayesian networks.
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Summary. In this paper we present a new method for mining spatial association
rules from geographic databases. On the contrary of most existing approaches that
propose syntactic constraints to reduce the number of rules, we propose to use back-
ground geographic information extracted from geographic database schemas. In a
first step we remove all well known dependences explicitly represented in geographic
database schemas. In a second step we remove redundant frequent sets. Experi-
ments show a very significant reduction of the number of rules when both well
known dependences and redundant frequent sets are removed.

1 Introduction

The association rule mining technique emerged with the objective to find
novel, useful, and interesting associations, hidden among itemsets [1] and
spatial predicate sets [2]. An enormous amount of algorithms with different
thresholds for reducing the number of rules has been proposed. However, only
the data have been considered, while the database schema, which is a rich
knowledge resource, has not been used as prior knowledge to eliminate well
known patterns.

In traditional association rule mining the schema might not be useful,
since items and transactions can be stored in a single relation. In geographic
databases, however, the number of object types to be considered for mining
is large. Every different object type is normally stored in a different relation,
since most geographic databases follow the relational approach [3]. Figure 1
shows an example of how geographic data are stored in relational databases.
There is a different relation/table for every different object type [3] (street,
water resource, gas station, and island).

V. Bogorny et al.: Towards Elimination of Redundant and Well Known Patterns in Spatial

Association Rule Mining, Studies in Computational Intelligence (SCI) 109, 343–360 (2008)
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(a) Street

Gid Name Length Shape

1 BR-101 632056.03 Multiline [(x1, y1), (x2, y2), ..]
2 RS-226 255365.88 Multiline [(x1, y1), (x2, y2), ..]

(b) WaterResource

Gid Name Length Shape

1 Jacui 3214328.71 Multiline [(x1, y1), (x2, y2), ..]
2 Guaiba 283434.23 Multiline [(x1, y1), (x2, y2), ..]
3 Uruguai 4523333.12 Multiline [(x1, y1), (x2, y2), ..]

(c) GasStation

Gid Name Vol Diesel Vol Gas Shape

1 Posto do Beto 20000 85000 Point[(x1, y1)]
2 Posto da Silva 30000 95000 Point[(x1, y1)]
3 Posto Ipiranga 25000 120000 Point[(x1, y1)]

(d) Island

Gid Name Population Sanitary Condition Shape

1 Flores 5000 Yes Point[(x1, y1)]
2 Pintada 20000 Partial Point[(x1, y1)]
3 Da Luz 15000 No Point[(x1, y1)]

Fig. 1. Examples of geographic data storage in relational databases

From the database design point of view, the objective of data model-
ing is to bring together all relevant object types of the application, their
associations/relationships, and their constraints [3,4]. Many geographic object
types have mandatory associations, represented in the schema by one–one
and one–many cardinality constraints, which the database designer has the
responsibility to warrant when the schema is conceived [4]. The representa-
tion is usually in the third normal form [4], intending to reduce anomalies and
warrant integrity.

In contrast to database schema modeling, where associations between
data are explicitly represented, association rule mining algorithms should find
implicit and novel associations. While the former represents the data into
the third normal form, the latter usually denormalizes the data in one single
table or one single file. This transformation brings the associations explicitly
represented in the database schema to the dataset to be mined, and by conse-
quence, many well known associations specified in the schema, are extracted
by association rule mining algorithms.

In geographic databases, the number of associations specified in the schema
reflects a large number of well known geographic dependences. Figure 2 shows
two layers of information of the same geographic region. On the left there is a
well known pattern, i.e., a geographic dependence where gas stations do always
intersect streets. If considered in association rule mining, such dependence



www.manaraa.com

Towards Elimination of Redundant and Well Known Patterns 345

Fig. 2. (left) Non-standard spatial relationships between Gas Stations (points) and
Water Bodies (lines), and (right) well known geographic dependence between Gas
Stations (points) and Streets (lines)

will produce high confidence rules (e.g. is a(GasStation)→ intersect(Street)
(100%)). On the right, however, there is no explicit pattern among gas stations
and water resources which may produce well known rules. Relationships such
as the example shown in Fig. 2 (right) may be interesting for association rule
mining.

Users of some domains may not be interested in strong geographic
domain rules such as is a(GasStation)→ intersect(Street) (100%), but in
non-obvious rules such as is a(GasStation) and intersect(WaterResource) →
pollution= high (70%).

In geographic databases, most mined rules are strongly related to geo-
graphic dependences which represent strong regularities, but do not contribute
to the discovery of novel and useful knowledge. The result is the mixed presen-
tation of thousands of interesting and uninteresting associations that can dis-
courage users from interpreting them all in order to find interesting patterns.

We claim that well known associations, explicitly represented in geographic
database schemas, should be eliminated in association rule mining to avoid
their extraction and presentation to the user. Although some well known
associations can be reduced in geographic data preprocessing steps [5], most
dependences can only be eliminated into the data mining algorithm. Aiming
to reduce the amount of both redundant and well known patterns, this paper
presents a two-step approach for mining spatial association rules. In the first
step geographic database schemas are used as prior knowledge to eliminate all
association rules which contain obvious geographic dependences. In the second
step, we eliminate all redundant frequent itemsets that generate redundant
rules [6], similarly to the closed frequent pattern mining technique [7–9].

The remainder of the paper is organized as follows: Section 2 introduces
geographic database schemas and how dependences can be extracted. Section 3
describes the problem of mining spatial association rules with well known geo-
graphic dependences and presents the methods to remove both redundant and
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well known dependences. Section 4 presents the experiments to evaluate the
proposed approach, Sect. 5 presents the related works, and Sect. 6 concludes
the paper and gives some directions of future work.

2 Geographic Database Schemas

Geographic database schemas are normally extended relational or object-
oriented schemas [3]. There is a trend toward extending both Entity Relation-
ship (ER) and Object-Oriented (OO) diagrams with pictograms to provide
special treatment to spatial data types [3]. References [10,11] are approaches
which extend ER and OO diagrams for geographic applications. In both ER
and OO approaches, relationships among entities are represented through
associations with cardinality constraints. In geographic database schemas,
these associations may either represent a spatial relationship or a single asso-
ciation, aggregation, etc.

Mandatory associations are represented by cardinality constraints one–
one and one–many [3, 4]. Figure 3 shows an example of part of a conceptual
geographic database schema, represented in a UML class diagram [12], and
part of its respective logical schema for relational and OO databases.

The schema in Fig. 3 represents part of the data shown in Fig. 2. Notice
that there are many mandatory associations (e.g. gas station and street, street
and county, water resource and county, and island and water resource). These
dependences, explicitly represented in the schema, produce well known pat-
terns when considered in spatial association rule mining (see in Fig. 2 (left)
that every gas station intersects one or more streets).

In the logical level, mandatory relationships expressed by cardinalities
one–one and one–many normally result in foreign-keys in relational geo-
graphic databases, and in pointers to classes, in object-oriented geographic
databases [3, 4].

For data mining and knowledge discovery well known geographic depen-
dences can be either specified by the user or automatically retrieved with
processes of reverse engineering [13] if the schema is not available. Many differ-
ent approaches to extract dependences from relational databases using reverse
engineering are available in the literature. For data mining and knowledge
discovery in non-geographic databases reverse engineering has been used to
understand the data model [14] in legacy systems, or to automatically extract
SQL queries [15], but not as prior knowledge to reduce well known patterns.

When provided by the user, a larger set of dependences can be speci-
fied; not only associations explicitly represented in the schema, but other
geographic domain dependences which produce well known patterns.

Figure 4 shows an example of a data preprocessing algorithm to extract
mandatory one–one and one–many associations from geographic database
schemas. If the database is relational, then the algorithm searches for all
foreign keys. For each foreign key, the name of the table which it references is
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Fig. 3. Conceptual and logical geographic database schema

Given: a relational database schema

Find all foreign keys

For each foreign key

Insert into φ the name of the table

which the foreign key references and the

name of the table to which the foreign key

belongs

Given: an OO database schema

Find all classes

For each class in the database schema

If there are references to classes

Insert the class name and the

referenced class into φ

Fig. 4. Algorithm to extract mandatory relationships
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retrieved, as well as the name of the table where the foreign key is specified.
The name of both relations is stored in a set of knowledge constraints φ. If the
database is object-oriented, then the same steps are performed, but searching
for classes with attributes which refer to other classes.

In order to evaluate the amount of mandatory associations in real geo-
graphic database schemas we analyzed the object-oriented geographic data-
base schema developed by the Brazilian Army. As the terrain model has a large
number of object types, common to different schemas, the database schema
developed by the Brazilian Army includes most geographic objects abstracted
from the real world as well as their associations.

On account of the large number of entities and relationships to be rep-
resented, geographic data conceptual schemas are usually designed in dif-
ferent layers of information. The geographic database schema developed by
the Brazilian Army is composed of eight layers (subschemas): edification,
infra-structure, hydrography, vegetation, administrative regions, referential,
relief, and toponymy. The layer infra-structure, for example, is divided in
six sub-schemas, including information about transportation, energy, econ-
omy, communication, etc. The hydrography layer, for example, represents
geographic objects such as rivers, oceans, lakes, etc.

Information of different layers may be extracted for data mining, and the
number of one–one and one–many relationships varies from layer to layer. For
example, the hydrography layer, which is shown in Fig. 5, has a total of 24
geographic objects (16 from its own layer and eight from other layers) which
share 13 mandatory 1..1 or 1..n associations.

This analysis showed that a large number of mandatory well known
geographic dependences are explicitly specified in the schema, and if used as
prior knowledge to avoid their extraction in association rule mining, a large
amount of irrelevant patterns will be eliminated.

3 Mining Spatial Association Rules with Knowledge
Constraints

We illustrate the problem of mining spatial association rules without removing
explicit geographic domain dependences through an example. Considering a
set of elements Ψ = {A,B,C,D}, all possible combinations of these elements
produce the sets: {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}, {A, B, C},
{A, B, D}, {A, C, D}, {B, C, D}, and {A, B, C, D}. Without considering any
threshold, the number of possible subsets is 11, and the maximum number of
rules produced with these subsets is 50, as shown in Table 1.

Now consider that the elements C and D have a mandatory association.
Notice that there are four subsets in which C and D appear together ({C, D},
{A, C, D}, {B, C, D} and {A, B, C, D}). These four subsets will produce 28
rules, and in every rule, C and D will appear. The result is that 56% of the
whole amount of rules is created with the dependence between C and D.
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Fig. 5. Conceptual object oriented schema of the Brazilian Geographic Territory
(MCOO of EBG – Brazilian Army – STI – DSG – 1◦DL)

Table 1. Maximum number of sets and association rules

Sets Possible rules Rules

{AB} A → B; B → A 2
{AC} A → C; C → A 2
{AD} A → D; D → A 2
{BC} B → C; C → B 2
{BD} B → D; D → B 2
{CD} C → D; D → C 2
{ABC} A → BC; B → AC; C → AB; BC → A; AC → B; AB → C 6
{ABD} A → BD; B → AD; D → AB; BD → A; AD → B; AB → D 6
{ACD} A → DC; D → AC; C → AD; DC → A; AC → D; AD → C 6
{BCD} D → BC; B → DC; C → DB; BC → D; DC → B; DB → C 6
{ABCD} A → BCD; B → ACD; C → ABD; D → ABC; AB → CD; 14

AC → BD; AD → BC; BC → AD; BD → AC; CD → AB;
BCD → A; ACD → B; ABD → C; ABC → D
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It is important to observe that we cannot simply remove C and D from
Ψ , because either C or D may have an interesting association with A or B.
However, we can avoid the combination of C and D in the same set. This
eliminates the possibility of generating rules including both C and D.

In the following sections we describe the formal problem of mining as-
sociation rules, the method as dependent objects are eliminated, and how
redundant frequent itemsets are pruned.

3.1 Spatial Association Rules

An association rule consists of an implication of the form X → Y , where X
and Y are sets of items co-occurring in a given tuple [1]. Spatial association
rules are defined in terms of spatial predicates, where at least one element
in X or Y is a spatial predicate [2]. Spatial predicates represent materialized
spatial relationships between geographic elements, such as close, far, contains,
within, touches, etc. For example, is a(x,slum) ∧ far from(x,water network)
→ disease(hepatitis) (70%) is a spatial association rule with 70% confidence.
In [16] we presented an intelligent framework to automatically extract spatial
predicates from large geographic databases.

The formal problem statement for defining association rules can be spec-
ified as follows: Let F = {f1, f2, . . ., fk, . . . , fn} be a set of non-spatial
attributes and spatial objects. Let Ψ (dataset) be a set of reference objects
T , where each T is a set of predicates (tuple) such that T ⊆ F . Each T is
represented as a binary vector, with an element t[k] = 1, if T contains the
attribute fk, and t[k] = 0, otherwise. There is exactly one tuple in the dataset
to be mined for each reference object. Considering X as a subset of F , T
contains X if, for all fk in X, t[k] = 1. Similarly, being Y a subset of F , T
contains Y if, for all fk in Y , t[k] = 1.

In a rule X →Y, X ⊂F, Y ⊂F and X ∩Y = ©/. The support s of a pred-
icate set X is the number of tuples in which the predicate set X occurs as a
subset. The support of the rule X → Y is given as s(X ∪ Y ).

The rule X → Y is satisfied in Ψ with confidence factor 0 ≤ c ≤ 1, if
at least c% of the instances in Ψ that satisfy X also satisfy Y . The notation
X → Y (c) specifies that the rule X → Y has confidence factor c. More
precisely, the confidence factor is given as s(X ∪ Y )/s(X).

The problem of mining association rules is performed in two main steps:

(a) Find all frequent patterns/predicates/sets: a set of predicates is a frequent
pattern if its support is at least equal to a certain threshold, called minsup.

(b) Generate strong rules: a rule is strong if it reaches minimum support and
its confidence is at least equal to a certain threshold, called minconf.

Assertion 1. [17] If a predicate set Z is frequent, then every subset of Z will
also be frequent. If the set Z is not frequent, then every set that contains Z
is not frequent too. All rules derived from Z satisfy the support constraints if
Z satisfies the support constraints.
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Considering Assertion 1, we propose a third class of constraints, called
knowledge constraints (φ). These constraints will be used to avoid the gener-
ation of frequent sets which contain the pairs of dependences specified in φ,
as will be explained in Sect. 3.2.

3.2 Pruning Well Known Patterns

Figure 6 shows the algorithm Apriori-KC, which is based on Apriori [17], and
has been the basis for dozens of association rule mining algorithms.

The algorithm shown in Fig. 6 removes from the candidate sets all pairs
of elements which have geographic dependences. As in Apriori, Apriori-KC
performs multiple passes over the dataset. In the first pass, the support of
the individual elements is computed to determine 1-predicate sets. In the
subsequent passes, given k as the number of the current pass, the large sets
Lk−1 in the previous pass (k − 1) are grouped into sets Ck with k elements,
which are called candidate sets.

The support of each candidate set is computed, and if it is equal or higher
than minimum support, then this set is considered frequent. This process
continues until the number of frequent sets is zero.

Similarly to [18], which eliminates in the second pass candidate sets that
contain both parent and child specified in concept hierarchies, we propose a
method to eliminate all candidate sets which contain geographic dependences,
independently of any concept hierarchy.

The dependences are eliminated in an efficient way, in one step, in the
second pass, when generating candidates with two elements. Being φ a set of

Given: φ, Ψ, minsup

L1 = {large 1-predicate sets};
For (k = 2; Lk − 1= ©/; k + +) do begin

Ck = apriori gen(Lk−1); // Generates new

// candidates

Forall T ∈ Ψ do begin

Ct = subset (Ck, T); // Candidates in t

forall candidates c ∈ Ct do

c.count++;

End;

Lk = {c ∈ Ck| c.count ≥ minsup};

If k = 2 // in the second pass

L2 = L2 − φ; //removes pairs with

// dependences

End;

Fig. 6. Pseudo-code of Apriori-KC to generate large predicate sets without well
known dependences
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pairs of geographic objects with dependences, which can be extracted from
the database schema or provided by the user, when k is 2, all pairs of elements
with a dependence in φ are removed from C2.

According to Assertion 1, this step warrants that the pairs of geographic
objects in φ will neither appear together in the frequent sets nor in the spatial
association rules. This makes our approach effective and independent of any
threshold such as minimum support, minimum confidence, lift, etc.

Our dependence elimination method removes each pair of geographic ob-
jects in φ (e.g. {C, D}), and avoids the generation not only of the main rule
C → D but of all derived rules (e.g. D → C, C → AD) which contain the
known dependence.

Although Apriori-KC removes well known geographic dependences, many
redundant frequent sets are still generated, as will be explained in the following
section.

3.3 Pruning Redundant Patterns

It is known that the Apriori algorithm generates a large amount of redundant
frequent sets and association rules [7]. For instance, let us consider the dataset
shown in Fig. 7a and the frequent sets and the transactions where the items
occur in Fig. 7b. The set {A, D, W}, for example, is a frequent set because it

(a) dataset

Tid itemset

1 A, C, D, T, W
2 C, D, W
3 A, D, T, W
4 A, C, D, W
5 A, C, D, T, W
6 C, D, T

b) frequent sets with minimum support 50%

TidSet Frequent itemsets L and closed frequent itemsets

123456 {D}
12456 {C}, {C,D}
12345 {W}, {D,W}
1245 {C,W}, {C,D,W}
1345 {A}, {A,D}, {A,W}, {A,D,W}
1356 {T}, {D,T}
145 {A,C}, {A,C,W}, {A,C,D}, {A,C,D,W}
135 {T,W}, {A,T}, {A,D,T}, {A,T,W}, {D,T,W}, {A,D,T,W}
156 {C,T},{C,D,T}

Fig. 7. (a) Example dataset and (b) the frequent itemsets with minimum support
50%
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reaches minimum support (50%). It is also a closed frequent set [6] because in
the set of transactions (1,345) where it occurs in the dataset, no set larger than
{A, D, W} (with more than three elements) in the same transactions reaches
minimum support. The frequent set {A, D, T}, for example, appears in the
transactions 135, but in the same transactions, a larger set {A, D, T, W} can
be generated. In this case the tidset(A,D,T) = 135, the tidset (A,D,T,W) =
135, and {A, D, T} ⊂ {A, D, T, W}, so the frequent set {A, D, T} is not closed.

According to [7], all frequent sets L that occur in the same transactions
generate rules with same support and same confidence. In Fig. 7b, for the
transactions 1,345, all rules generated from the four frequent itemsets have
same support and same confidence. The maximal itemset for each set of
transactions contains the maximal number of elements (in transactions 1,345
{A, D, W} is the maximal set), all other sets generate redundant rules. For
instance, a rule generated from a frequent itemset {A, W}, such as A→W, is
redundant in relation to a rule A→DW, generated from the closed frequent
itemset {A, D, W}.

A frequent itemset L is a closed frequent itemset if Ω(L) = L [7]. The
closure operator Ω associates with a frequent itemset L the maximal set of
items common to all transactions (tidset) containing L. Rules generated from
non-closed frequent itemsets are redundant to rules generated from their re-
spective closed frequent sets. In Fig. 7b, the frequent sets in bold style are
the closed frequent itemsets. All other frequent sets are redundant and will
generate redundant association rules.

Redundant frequent sets and redundant association rules can be signifi-
cantly reduced by generating closed frequent itemsets [7, 8]. Since redundant
frequent sets generate association rules with same support and same confi-
dence they can be eliminated in the step where frequent sets are generated [7],
similarly to the dependence pruning method presented in the previous section.

After the frequent sets with well known geographic dependences have been
removed, the resultant frequent sets may not be closed anymore [9]. For in-
stance, let us consider the dependence {C, D} and the frequent sets shown
in Fig. 7b for the transactions 145. Notice that by removing the pair {C, D},
the frequent set {A, C, D} and the closed frequent set {A, C, D, W} will not
be generated by Apriori-KC. However, the pair {A, C} is still redundant in
relation to the set {A, C, W}, while the latter is the maximal set for the trans-
actions 145, but is not closed. Considering that after geographic dependences
have been removed we may not generate closed frequent itemsets in relation
to the dataset, we apply the closed frequent pattern mining technique over
the resultant frequent sets generated by Apriori-KC to remove the redundant
sets, but not to generate closed frequent sets.

Figure 8 shows the pruning method to eliminate redundant frequent sets
that are still generated by Apriori-KC.

Given a set L of frequent sets generated with Apriori-KC presented in
the previous section and the geographic dataset Ψ , the pruning of redundant
frequent sets starts similarly to the closed frequent set approach. All frequent
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Given: Lk; // frequent sets generated with Apriori-KC

Ψ; // a spatial dataset

Find: Maximal M

// find maximal generalized predicate sets

M = L;

For (k = 2;Mk != ©/; k + +) do begin

For (j = k + 1;Mj != 0; j + +) do begin

If
(
tidSet (Mk) = tidSet (Mj)

)
If (Mk ⊂ Mj) // Mj is more general than Mk

Delete Mk from M;

End;

End;

Answer = M;

Fig. 8. Elimination of redundant frequent sets without well known dependences

sets M , with size k are compared to the sets with size k + 1. When a set
Mk ⊂ Mk+1 and the set of transactions (tidset) in which Mk appears is the
same as the transactions where Mk+1 appears, then we can say that Mk is
redundant, while Mk+1 is more general. When this occurs, Mk is removed from
M . This process continues until all frequent sets in M have been tested and
have no more redundant frequent sets. Association rules are then extracted
from M as in Apriori.

4 Experiments and Evaluation

For the data mining user, more important than the reduction of the compu-
tational time to generate spatial association rules is the elimination of well
known geographic domain rules, which will reduce the human time for analyze
the rules.

In this section we present experiments performed over different datasets,
extracted from a real geographic database of the city of Porto Alegre, in
order to evaluate the elimination of geographic dependences and redundant
frequent sets in spatial association rule mining. The first experiment was per-
formed over a dataset with 18 spatial predicates, including the relevant feature
types trees, treated water network, slums, cellular antennas, water resources,
water collection points, illumination points, streets, schools, hospitals, health
centers, industrial residues repositories, and artesian wells. This dataset has
two dependences among the relevant feature types illumination points and
streets, and water resource and water collection points.

In the first experiment, shown in Fig. 9, we evaluate the rule reduction
when one and two pairs of well known dependences are eliminated, consid-
ering two different values of minimum support, 15 and 25%. In Fig. 9 (left)
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Fig. 9. Experiments with dependence elimination

we evaluate the method without considering minimum confidence. In this
experiment, for different values of minimum support the elimination of one
dependence reduced the number of rules in an average of 20% in relation to
Apriori. The elimination of two dependences reduced the rule generation in
comparison with Apriori in around 54% for the different values of minimum
support.

In Fig. 9 (right) we have performed the same experiment considering 70%
minimum confidence. As can be observed, the number of rules is significantly
reduced by considering 70% as minimum confidence, but only considering this
experiment we would not be able to say how many rules are eliminated by the
confidence and how many by the dependence pruning method. For instance,
for support 25% the rule reduction when one dependence is eliminated reaches
47% in relation to Apriori. In comparison with the experiment in Fig. 9 (left)
we know that the dependence elimination pruned the rules in 19%, while the
other 28% are reduced by the minimum confidence threshold.

In order to evaluate the pruning methods proposed in this paper we present
two more experiments performed over different datasets, considering different
values of minimum support, and without considering minimum confidence.

The second experiment was performed over a dataset with 17 spatial pred-
icates including feature types bus stops, streets, slums, sewer network, cellu-
lar antennas, water collection points, hydrants, hydrographic basin, etc. This
dataset has a spatial dependence between the relevant feature types bus stop
and street. In this experiment, which is shown in Fig. 10, we considered three
different values of minimum support (5, 10, and 15%), in order to evaluate the
reduction of both frequent sets and association rules. In Fig. 10 (left) we eval-
uate the frequent set reduction by removing both dependences and redundant
frequent sets. For the three values of minimum support the elimination of one
single dependence reduced the frequent sets in an average of 20%, while the
elimination of the dependence and the redundant frequent sets reduced the
frequent sets in an average of 86%.

By reducing the number of frequent sets, the number of association rules
is by consequence reduced for all values of minimum support, as shown in



www.manaraa.com

356 V. Bogorny et al.

1,321

1,021

126

602

496

83

286
230

49

0

200

400

600

800

1,000

1,200

1,400

F
re

qu
en

t s
et

s

5% 10% 15% 5% 10% 15%

Minimum Support

Frequent Sets

Apriori

Removing 1 dependence

Removing 1 dependence and
redundant frequent sets

Apriori

Removing 1 dependence

Removing 1 dependence and
redundant frequent sets

44,534

26,282

6,140

11,864
8,608

2,514
3,964

2,528
942

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

N
um

be
r 

of
 R

ul
es

Minimum Support

Spatial Association Rules

Fig. 10. Frequent set and association rule evaluation by pruning dependences and
redundant frequent sets

1,122

574

344

570

286
176

0
200

400
600
800

1,000

1,200

Minimum Support

Spatial Association Rules

117

85

32

71

51

20

0

20

40

60

80

100

120

F
re

qu
en

t s
et

s

N
um

be
r 

of
 R

ul
es

5% 10% 5% 10%
Minimum Support

Frequent Sets

Apriori

Removing 1 dependence

Removing 1 dependence and
redundant frequent sets

Apriori

Removing 1 dependence

Removing 1 dependence and
redundant frequent sets

Fig. 11. Frequent sets and spatial association rule evaluation

Fig. 10 (right). The most significant reduction is for lower minimum support.
The elimination of one single dependence reduced the rules in 41% for mini-
mum support 5% in comparison to Apriori, and much more significantly when
the redundant frequent sets are eliminated as well, where the rule reduction
reaches 86%.

The third experiment was performed over a dataset with 15 spatial pred-
icates including feature types streams, slums, hospitals, gas stations, streets,
etc. This dataset has one dependence among the relevant feature types gas
station and streets, and 2,159 rows, where each row corresponds to a census
sector in the city of Porto Alegre. In this experiment the number of rows is
much higher than in the previous experiments that had only 109 rows, but the
number of generated frequent sets and association rules is much lower, since
frequent sets and association rules are data dependent. Figure 11 (left) shows
the number of frequent sets generated from this dataset and Fig. 11 (right)
shows the respective number of association rules. Although the number of fre-
quent sets and association rules generated from this dataset are much lower
than in the previous experiments, the percentage of frequent set and rule re-
duction remains significant. A reduction from 1,122 rules to 344 rules as shown
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for minimum support 5% in Fig. 11 (right) will make a significant difference
for the data mining user that has to analyze all rules, one by one, in order to
find novel, interesting, and useful patterns.

5 Related Works

Existing approaches for mining spatial association rules do not make use of
prior knowledge to reduce the number of well known patterns. Koperski [2]
presented a top-down, progressive refinement method. In a first step spatial
approximations are calculated, and in a second step, more precise spatial rela-
tionships are computed to the result of the first step. Minimum support is used
in data preprocessing to extract only frequent spatial relationships. A similar
method has been proposed by [19] for mining association rules among geo-
graphic objects with broad boundaries. [20] applied Apriori [17] to geographic
data at different granularity levels.

In our previous work [5] we presented a data preprocessing method us-
ing prior knowledge to reduce geographic dependences between the reference
object and the relevant objects. However, geographic dependences among rel-
evant objects can only be completely eliminated during the data mining step.
As a continued study in mining spatial association rules using background
knowledge, in this paper we propose to remove not only well known geographic
patterns among relevant feature types, but also redundant patterns.

In geographic databases, minimum support can eliminate information
which may lead to novel knowledge, while geographic domain associations
may still remain among the resultant set of rules.

Approaches for mining non-geographic data generate closed frequent item-
sets to reduce redundant rules [6–8] and investigate the most appropriate
threshold [21] or the interestingness [22] of the rules, but do not warrant the
elimination of well known patterns. Our approach presented in this paper
eliminates in a first step the exact pairs of dependences which produces non-
novel rules, independently of any threshold, and in a second step eliminates
redundant frequent sets. In summary, our method avoids the generation of
rules known a priori as non-interesting, and then removes redundant frequent
sets to avoid the generation of redundant rules.

6 Conclusions and Future Work

In this paper we presented a method for mining spatial association rules using
prior geographic domain knowledge. Domain knowledge refers to mandatory
geographic dependences explicitly represented in geographic database schemas
or which are well known by the user. We showed that explicit mandatory rela-
tionships produce irrelevant patterns, while the implicit spatial relationships
may lead to more interesting rules.
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Considering geographic domain dependences as prior knowledge, we pro-
posed a frequent set pruning method that significantly reduces the number of
spatial association rules. Besides pruning a large number of rules, all associa-
tions that would be created with well known geographic domain dependences
are eliminated. Our method eliminates all dependences in one single step,
before creating the rules. The result is that more interesting rules will be
generated, independently of values of minimum support or confidence.

The main advantage of our method is the simplicity as well known depen-
dences are eliminated. While most approaches define syntactic constraints and
different thresholds to reduce the number of patterns and association rules,
we consider semantic knowledge constraints, and eliminate the exact pairs of
geographic objects that produce well known patterns.

The main contribution of our approach is for the data mining user, which
does not have to analyze hundreds or thousands of rules without novel
knowledge.

Traditional association rule mining algorithms that generate frequent sets
or closed frequent sets eliminate redundant and non-interesting rules, but do
not warrant the elimination of well known geographic dependences. In this
paper we have shown the significant frequent set and rule reduction when
both well known dependences and redundant frequent sets are eliminated
before the generation of spatial association rules.

As future work we will evaluate the problem of mining spatial association
rules with knowledge constraints at different granularity levels.
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Summary. The FP-tree is an effective data structure that facilitates the mining
of frequent patterns from transactional databases. But, transactional databases are
dynamic in general, and hence modifications on the database must be reflecting onto
the FP-tree. Constructing the FP-tree from scratch and incrementally updating the
FP-tree are two possible choices. However, from scratch construction turns unfea-
sible as the database size increases. So, this chapter addresses incremental update
by extending the FP-tree concepts and manipulation process. Our new approach is
capable of handling all kinds of changes, include additions, deletions and modifi-
cations. The target is achieved by constructing and incrementally dealing with the
complete FP-tree, i.e., with one as the minimum support threshold. Constructing
the complete FP-tree has the other advantage that it provides the freedom of
mining for lower minimum support values without the need to reconstruct the tree.
However, directly reflecting the changes onto the FP-tree may invalidate the basic
FP-tree structure. Thus, we apply a sequence of shuffling and merging operations to
validate and maintain the modified tree. The experiments conducted on synthetic
and real datasets clearly highlight advantages of the proposed incremental approach
over constructing the FP-tree from scratch.

1 Introduction

Data mining is the process of discovering and predicting hidden and unknown
knowledge by analyzing known databases. It is different from querying in the
sense that querying is a retrieval process, while mining is a discovery process.
Data mining has received considerable attention over the past decades and a
number of effective mining techniques already exist. They are well investigated
and documented in the literature. However, existing and emerging applications
of data mining motivated the development of new techniques and the extension
of existing ones to adapt to the change. Data mining has several applications,
including market analysis, pattern recognition, gene expression data analysis,
spatial data analysis, among others.
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Association rules mining is a technique that investigates the correction
between items within the transactions of a given database. Explicitly, given a
database of transactions, such that each transaction contains a set of items, the
association rules mining process determines correlations of the form X ⇒ Y ,
such that X and Y are disjoint sets of items from the investigated database.
A correlation X ⇒ Y is characterized by support and confidence. The former
refers to the percentage of transactions that contain all items in X∪Y by con-
sidering all the transactions in the database; and the latter is the percentage
of transactions that contain all items in Y by considering only transactions
that contain all items in X. A rule is worth further investigation if it has both
high support and confidence as compared to predefined minimum support
and confidence values specified mostly by the user who is expected to be an
expert. Basket market analysis is one of the first applications of association
rules mining [3]. Organizations which deal with transactional data are more
concerned to use the outcome to decide on better marketing strategies, to de-
sign better promotional activities, to make better product shelving decisions,
and above all to use these as a tool to gain competitive advantages.

A formal definition of the problem of association rule mining as described
in [3,11] can be stated as follows. Let I = {i1, i2, . . . , im} be a set of literals,
called items, and let D be a set of transactions, where each transaction T is
a set of items such that T ⊆ I. Each transaction in D has a unique identifier,
denoted TID. A transaction T is said to contain an itemset X if X ⊆ T .
The support σD(X) of an itemset X in D is the fraction of the total number
of transactions in D that contain X. Let σ (0 ¡ σ ¡ 1) be a constant called
minimum support, mostly user-specified. An itemset X is said to be frequent
on D if σD(X) ≥ σ. The set of all frequent itemsets L(D, σ) is defined formally
as, L(D, σ) = {X : X ⊂ I, σD(X) ≥σ}. An Association rule is a correlation
of the form “X ⇒ Y ,” where X ⊆ I, Y ⊆ I and X ∪Y = φ. The rule X ⇒ Y
has a supportσ in the transactional database D if σ% of the transaction in
D contain X ∪ Y . The rule X ⇒ Y holds in the transactional dataset D with
confidence c if c% of the transactions in D that contain X also contain Y .

So, the process of association rules mining starts by determining subsets
of items that satisfy the minimum support criteria. Such subsets are called
frequent itemsets. There are several approaches described in the literature to
decide on frequent itemsets, and one of the basic rules used by Apriori [3]
is the fact that all subsets of a frequent itemset must be frequent. However,
most of the approaches described in the literature are capable of handling
static databases; they do not consider dynamic database that are frequently
updated to reflect such updates incrementally onto the outcome of the mining
process without repeating the whole process from scratch. In fact, real life
databases are mostly dynamic and for an approach to be widely accepted
it should have the flexibility to handle dynamic databases effectively and
efficiently. So, the target is having incremental mining algorithms capable of
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updating the underlying mining models without scanning, or with minimal
scanning of, the old data depending on the mining task at hand.

This need has been realized by several research groups who successfully de-
veloped incremental algorithms, e.g, [6–9, 18]. Such algorithms can maintain
mining models and can update the association rules if the database is up-
dated without rebuilding the mining model for the whole updated database.
But most of these incremental algorithms are level-wise in nature and depend
on candidate generation and testing; hence require multiple database scans.
On the other hand, FP-growth proposed by Han et al. [12], is an interesting
approach that mines frequent patterns without explicitly re-generating the
candidate itemsets. This approach uses a data structure called the FP-tree,
which is a compact representation of the original database. But the prob-
lem with the FP-tree approach is that it is not incremental in nature. In
other words, the FP-tree is constructed to include items that satisfy a given
pre-specified minimum support threshold and is expected to be reconstructed
from scratch each time the original database is modified. This reconstruction
from scratch becomes unacceptable as the database size increases and the fre-
quency of modifications becomes high. This is our main motivation for the
incremental approach developed within the realm of this research project.
Our initial testing reported in [2] highly encouraged us to improve the process
further for better overall efficiency and performance.

The target that we successfully achieved in this research project is to in-
crementally update the FP-tree as the database gets updated and without
scanning the old data or reconstructing the tree from scratch. To achieve this,
we construct and maintain the complete FP-tree. This way, all occurrences
of items are reflected from the database onto the FP-tree. So, new updates
are added into the complete FP-tree without scanning the old data. This
is not a simple process. Just reflecting updates into the FP-tree may turn it
into a structure that contradicts its definition. To overcome this, we adjust the
modified structure to fit to the FP-tree definition by applying two basic opera-
tions, namely shuffling and merging. We further improved the implementation
by recoding several of the Java built-in functions and operations and hence
achieved much better performance than the initial results reported in [2]. In
this chapter, we demonstrate the applicability, effectiveness and efficiency of
the proposed approach by comparing its performance with the performance
of constructing the complete FP-tree from scratch. The achieved results are
very promising and clearly reflect the novelty of the proposed incremental
approach.

The rest of the chapter is organized as follows. Section 2 presents the
necessary background and the related work. Section 3 presents our proposed
approach with an illustrative example. Section 4 includes the experimental
results. Section 5 is summary and conclusions.
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2 Background and Related Work

2.1 Construction of the FP-Tree

FP-tree: An FP-tree is a prefixed tree of the frequent items by considering all
transactions in the database. It is called prefixed tree because it is constructed
in such a way that common prefixes of the sorted transactions are merged to
be shared as tree paths or sub-paths. Items in each transaction are sorted
in descending order according to the overall frequency in the database. So,
it is most likely that the most frequent items will be shared the most. As a
result, we have a very compact representation of the original transactional
database. Each node of the FP-tree contains the following fields: item-name,
item-count, and node-link, where item-name denotes the represented item,
item-count designates the number of transactions sharing a prefix path up
to the node, and node-link refers to the next node in the FP-tree with the
same item-name. The root is labeled as “null” and links to a set of item prefix
sub-trees as its children. A frequent item header table is associated with each
FP-tree; each entry in the table contains two fields: item-name and head of
node-link which points in the FP-tree to the first occurrence of the node
carrying the same item-name.

To construct the FP-tree, first scan the whole transactional database to
collect the frequency of each item in the database. Then, sort the items accord-
ing to their frequency in descending order to build the list of frequent items
in the database. In the next phase, create the root of the FP-tree. Then, scan
the whole transaction database once again, and for each transaction in the
database first sort its items in descending order according to the overall fre-
quency. Items that do not meet the support criteria are removed from the
transaction. Finally, add the sorted and truncated transaction to the root of
the FP-tree in the following path.

Let the sorted and truncated item-list in the transaction be [p|P ]∗; this
notation was adopted by Han et al. [12], where p is the first element of the
list and P is the remaining list. If the root has a child corresponding to item
p, then just increment the count of the child by one. But if the root does not
contain a child corresponding to the same item, then create a new child of the
root corresponding to item p, and set its count to one. To add the remaining
list P , consider the child as the root for list P and add items in P recursively;
proceed by the same way until list P is empty.

2.2 Related Work

FUP (Fast Update) [6] is one of the earliest algorithms proposed for maintain-
ing association rules discovered in large databases. The approaches described
in [6–8] all belong to the same class of candidate generation and testing; they
all require k scans to discover large itemsets, with k as the length of the maxi-
mal large itemset. There are other incremental algorithms, which are based on
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the FUP algorithm, e.g., MAAP [20] and PELICAN [19]. These FUP based
algorithms not only require multiple database scans, but also have to gen-
erate two sets of candidate itemsets (one for the original data and one for
the incremental data), resulting in sharp increase in the number of candidate
itemsets.

On the other hand, the work described in [9, 18] proposes an incremental
algorithm which requires at most one scan of the whole database to find the
set of frequent patterns for the updated database. However, it is shown in the
work described in [1] that the main bottleneck of the work described in [9,18]
is that it has to generate the negative border closure. The negative border
consists of all itemsets that were candidates, but did not have the minimum
support to become frequent during the kth pass of the Apriori algorithm,
i.e., NBd(Lk)= Ck − Lk, where Lk is the set of frequent itemsets and Ck is
the set of candidate itemsets that were generated during the kth iteration.
Negative border closure generation induces the possibility of rapid increase
in the candidate generation, and the time required to count the support for
these explosive number of candidates outweighs the time saving achieved by
evading repeated database scans.

Recently, Ganti et al. [11] proposed an improved version of the approach
described in [9], known as ECUT/ECUT+, where they keep TID-lists: θ(i1),
. . ., θ(ik) of all the items in an itemset X = {i1, . . . , in}, to count the support
of X. The intuition behind keeping the TID-list is that it reduces the amount
of data to scan when counting the support of an itemset X, by only scanning
the relative portion of the database. In order to count the support of the can-
didate itemsets efficiently, they keep the candidate itemsets in a prefix-tree
data structure proposed by Mueller [17]. These approaches work based on the
assumption that when database updates occur, only a small number of new
candidate itemsets need to be considered. This assumption is very unrealis-
tic, and so these approaches also suffer from the same candidate explosion
problem.

The sliding window filtering (SWF) approach [14] is another incremental
association rule mining approach that relies on database partitioning. SWF
partitions the database into several non-overlapping partitions, and employs
two filtering thresholds in each partition to deal with candidate itemset gen-
eration. Each partition is independently scanned, once to gather the support
count of the itemsets of length 1, and then the first filtering threshold is used
to generate what they call type β candidate itemsets C2 of length 2 (i.e.,
the newly selected candidate itemsets for that particular partition). By using
the prior knowledge gained from the previous partitions, it also employs an-
other filtering threshold known as cumulative filter (or CF ) to generate type
α candidate itemsets, to progressively update C2. These are length 2 candi-
date itemsets that were carried over from the previous progressive candidate
sets and remain as candidate itemsets after the current partition is taken
into consideration. Using two different support thresholds in this way helps
in reducing candidate generation by a considerable amount.



www.manaraa.com

366 Muhaimenul et al.

After generating C2 from the first database, the scan reduction technique
is used to generate candidate itemsets Ck of length k, for all k > 2. But,
the performance of the SWF approach is dependent on the partition size,
and deletion can only be done at the partition level, which is an unrealistic
assumption. Moreover, the scan reduction technique usually generates more
candidates when the length of the candidates is greater than 2.

The work of Amir et al. [4] involves projecting all the transactions in the
database in a trie structure (a trie is an ordered prefix-tree like data structure
to store an associative array or map; in the case of [4], the key is the set of
itemsets, which maps to the corresponding frequency). It takes transactions
of the database one by one, extracts the powerset of the transaction, and
projects each member of the powerset into the trie structure for updating the
support count. Once built, the trie structure can be traversed in a depth first
manner to find all the frequent patterns.

The advantage of the trie structure is that it is inherently incremental –
transactions can be easily added or deleted from the trie structure. But, when
the support threshold to mine is low and the database size is large, it is very
likely that the trie would become closer to the powerset 2|I| of the set of items
I present in the database D, and hence would exhaust the main memory
very soon. Moreover, this approach requires generating the powerset of each
transaction while constructing the trie, which can be very time consuming
operation when the average transaction length is large.

AFPIM [13] finds new frequent itemsets with minimum re-computation
when transactions are added to, deleted from, or modified in the transac-
tional database. In AFPIM, the FP-tree structure of the original database is
maintained in addition to the frequent itemsets. The authors claim that in
most cases, without needing to re-scan the whole database, the FP-tree struc-
ture of the updated database is obtained by adjusting the preserved FP-tree
according to the inserted and deleted transactions. The frequent itemsets of
the updated database are mined from the new FP-tree structure. However,
this claim is not supported by the approach as described in their paper [13].
Actually, AFPIM is not a true incremental approach because it does not keep
the complete FP-tree, rather it is based on two values of support for con-
structing the FP-tree. It keeps in the tree only items with support larger than
the minimum of the two maintained support values, i.e., potential candidates
to become frequent in the near future, this is not realistic and mostly requires
full scan of the whole database almost every time the database updates are
beyond the anticipated change.

CanTree (CANonical-order TREE) is another incremental tree construc-
tion approach proposed by Leung et al. [15]. It is basically a derivative of the
FP-tree, where the items are ordered according to some canonical ordering
established prior to or during the mining process. All the other properties of
CanTree are similar to those of the FP-tree. Based on the canonical ordering,
the authors are able to eliminate the initial database scan required to gather
the frequency ordering of items. The use of this canonical ordering also makes
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their approach incremental. But they provide no realistic assumptions on how
to determine this canonical ordering in the first place. We know that it is very
common for the real world databases to have trends or to have data skew –
i.e., the itemsets that makes the transactions – changes over time. For exam-
ple, if we consider a retail store transactional database – the itemsets that are
commonly purchased in the winter may be different from the itemsets that are
purchased during the summer; or even this may vary based on the time period
of the day or week and the financial status of the customers. Such a CanTree
will grow exponentially as we keep adding the transactional data, and as it
does not follow the global frequency in descending ordering – the end result
being the exhaustion of the main memory at a very early stage. Moreover,
it takes more time to traverse a larger tree compared to a smaller one, this
may actually increase the tree construction time once the tree becomes very
large.

3 Incremental Construction of the FP-Tree

In this section, we describe the proposed method for constructing the FP-tree
incrementally. This method avoids full database scan, and reflects onto the
FP-tree that was valid at time t all database updates done between t and
t + 1. Thereby, the proposed method saves substantial amount of processor
time.

When new transactions are added to the database, some items that were
previously infrequent may become frequent, and some items that were previ-
ously frequent may become infrequent. As we do not know which items are
going to be frequent and which items are going to be infrequent, and to be
able to construct the FP-tree incrementally, we start with a complete FP-tree
having minimum support threshold of 1. In other words, for our method to
work, we always keep a complete FP-tree based on transactions that are valid
at the current time. This approach provides the additional advantage that
it does not require building new FP-trees for mining frequent patterns with
different support thresholds.

The incremental method starts from the initial FP-tree constructed at
time t. When a new set of transactions dt+1 arrive at time t + 1, the method
first scans the incremental database dt+1 to collect the frequency of items
in the incremental database dt+1. For each item, its frequency in the initial
database Dt and the incremental database dt+1 (if exists) are combined to get
the cumulative frequency list of all the items in the updated database Dt+1.
Then, the items are sorted in descending ordering according to their already
computed cumulative frequencies to get what we call the Ft+1−List. Corre-
sponding entries in the old frequency list Ft−List and the new frequency list
Ft+1−List are compared to identify items which have changed their relative
order in the sorted frequency ordering. Such items are stored in a separate list,
which we call the S-List (shuffle list). So in essence, the S-List contains the set
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of items for which the order of the nodes in the FP-tree need to be changed
to reflect the addition of new transactions and to keep the FP-tree valid.

Before describing the incremental method, we need to present the neces-
sary definitions and the basic terminology required to understand the material
in the rest of this section.
Freqt( at,i): Let Dt be the database at time t, Freqt(at,i) is defined as the
fraction of transactions that appear in Dt and which contain item at,i.
F t-List : The Frequency List at time t, denoted Ft-List, contains the list of
items sorted in descending ordering according to the frequency of items that
appear in the transactions at time t. It is defined as the set {at,1, at,2, . . . ,
at,n} where n is the number of items present in the database at time t, at,i

corresponds to an item in the database and Freqt(at,i) ≥Freqt(at,j) for 1 ≤
i < j ≤ n.
Post(at,i): Post(at,i) is defined as the ordinal position of item at,i in the Ft-
List at time t.
S-List : The S-List is constructed from the Ft+1-List by repeating the following
steps until the Ft+1-List is empty:

1. Take the first item, at+1,1 from the Ft+1-List.
2. Insert item, at+1,1 into the S-List if Post+1(at+1,1) <Post(at,i), where

there is an item at,i in the Ft-List and at+1,1 = at,i for 1 ≤ i ≤ n.
3. Remove item at+1,1 from the Ft+1-List and item at,i from the Ft-List,

while maintaining the ordering of the items.
4. If there are more items in the Ft+1-List, go back to step 1.

The incremental update process assumes two main instances as input,
namely, the current complete FP-tree and the incremental database to be
reflected onto the current complete FP-tree. Then, a sequence of steps are
performed to produce the most up-to-date complete FP-tree, which incorpo-
rates all the updates. First, the frequencies of the items in the incremental
database are produced by scanning the incremental database. These frequen-
cies are added to the corresponding frequencies of the current FP-tree. The
new total frequencies should be sorted in descending order to be able to check
whether the order of items has changed. Items that have changed their posi-
tions produce the S-list, which is used to shuffle the current FP-tree to move
each node to its desired position in the new version of the FP-tree, the ver-
sion to be obtained after adding the items in the incremental database. Such
arrangement will easily facilitate updating the FP-tree to include the incre-
mental database, and hence produce the desired most up-to-date FP-tree.

The shuffling operation takes FP-tree TDt
at time t and the ordered S-List

as input to produce FP-tree TD′
t+1

in which nodes are ordered according to
the cumulative frequency of items. For each item in the S-List starting from
items that have the highest frequent: its corresponding node is pulled to its
maximum attainable frequency peak in the FP-tree TDt

; and then nodes that
correspond to the same item and have same parent are recursively Merged.
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The insertion operation takes FP-tree TD′
t+1

and the incremental data-
base dt+1 as input to produce a modified FP-tree TDt+1 . for each transaction
Tran in the database dt+1: the items in Tran are sorted in descending or-
der according to their total frequency (from the original and the incremental
database), and then Tran is added to tree TD′

t+1
while maintaining the prefix

path property.
To get a better understanding of the shuffling process, we describe the Pull

and Merge operations next.
The Pull Operation: We need to pull each node in the S-List to its maximum
attainable frequency peak in the FP-tree. By maximum attainable frequency
peak we mean the position in the FP-tree for which node frequency is higher
than any node of the sub-trees below the peak. We start from the maximum
frequent node in the S-List and pull subsequent frequent nodes in the S-List
one by one. Depending on the item-count Cn of the node to be Pulled and
the item-count Cp of its parent, the following two cases are possible.

Case-I :Cn = Cp

In this case, the item-count of the node to be pulled is the same as the item-
count of its parent. We can safely assume that the parent has no children other
than the node to be pulled. Figure 1 shows one example of case I and how
the node is pulled in such case. In this case, we can just swap the two nodes
in question by swapping their item-name, item-count and node-link pointers.
In Fig. 1, the dotted blue links represent the node-link pointers.

Case-II: Cn < Cp

In this case, however, item-count of the parent node is greater than item-count
of the node to be pulled. So, there is a strong possibility that either the node
to be pulled has more that one sibling or the parent node was the last item for
some transactions. In both cases, the pulling process starts by first splitting
the parent node into two nodes. Then, case-II simply reduces to case-I, and
we can easily swap the two nodes to pull the desired node upwards.
The Split Operation: This is achieved by creating one new node, which cor-
responds to the same item as the parent node. We make this node a sibling

node to be Pulled

node after Pulling

(a) (b)

p:... p:... p:... p:...

n:...
n:...

n:...
n:...

p: Cp

p: Cpn: Cn

n: Cn

Fig. 1. Case-I (Cn = Cp)
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of the parent. We then adjust the item-count for the parent as Cn (the same
count as for the node to be pulled), and make the item-count for the new node
as Cp −Cn. Then, we have to adjust the children of the parent node and the
new node in question. We can do this by making all siblings of the node to
be pulled as children of the new node. This way, the parent node will contain
only one child, which is the node to be pulled. This successfully reduces case-II
to a situation similar to case-I. Figure 2 shows one example of case-II and
steps of the pulling operation.

We continue pulling recursively as long as the item frequency of the node
to be pulled is greater than the item frequency of its parent. This condition is
broken when we reach the maximum attainable frequency peak corresponding
to the node and we do not need to pull the node any farther; this is in fact
the stopping criterion of the pulling operation.
Merge Operation: Once we have pulled the node to its maximum attainable
frequency peak and because of the shuffling of nodes, there can be situations
where the parent of the pulled node has two child nodes that correspond to the
same item. In this case, we have to merge the two nodes to remain consistent
with the definition of the FP-tree. We have to carry out this merging operation
recursively, as there can be situations where two children of the merged node
correspond to the same item. After the final Merging process, we get a tree
where the ordering of nodes corresponds to the cumulative frequency of items
in descending ordering (Fig. 3).

We can handle the deletion of transactions in a way similar to the addition
of transactions. We start by shuffling/rearranging the tree by taking into ac-
count the new frequency ordering. Once all the nodes of the tree are arranged

node after Pulling

node to be Pulled

node to be Pulled

(a)

(b)

(c)

Split this node

new node after
the Splitting

new node after the Splitting

pp: Cpp

pp: Cpp

pp: Cpp

p: Cp-Cn

p: Cp-Cn

n: Cn

n: Cn

n: Cn

p: Cn

p: Cp

p: Cn

n: ...

n: ...

n: ...

n: ...

p: ...

p: ...

n: ...

n: ...

p: ...p: ...

p: ...

p: ...

x: Cx

x: Cx

x: Cx

Fig. 2. Case-II (Cn ¡ Cp)
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p: Cp
p: Cp

n: Cn
1

n:Cn
1

+Cn
2

n: Cn
2

x: Cx x: Cx
y: Cy

(a) (b)

y: Cy

n: ... n: ... n: ... 

Node after merging
Nodes to be merged

n: ... 

Fig. 3. Merge operation

properly, we can delete existing transactions from the FP-tree by just only
decrementing the item-count of the nodes that participate in the transactions
paths.

After updating the FP-tree for the modified database, we are currently
mining the FP-tree by using using the FP-growth approach [12]. We are still
working on our own mining algorithm which combines the advantages of sev-
eral of the algorithms already described in the literature.

4 Experimental Results

In this section, we describe the performance of the proposed incremental
update on different real and synthetic datasets. The method has been im-
plemented in JAVA. We decided on minimizing the usage of JAVA build-in
functions and classes because we realized that our first implementation did
not produce good results even for the classical FP-tree, mainly because it
heavily used such predefined JAVA functions.

All the experiments have been conducted on an IBM Pentium IV machine
with 2.0 GHz CPU and 512 MB main memory; running Windows-XP. We
used five synthetic and one real datasets in the experiments; the synthetic
datasets are: D1(T40I10D100K) with 1,000 items and 100K transactions,
D2(T10I4D1M) with 1,000 items and 1M transactions, D3(T10I4D100K)
and D4(T25I10D100K) with 10,000 items and 100K transactions; and
D5(Connect) with 129 items and 67,557 transactions. The real dataset is
D6(Retail) with 16,469 items and 88,162 transactions. The datasets D1, D5,
and D6 are taken from the FIM dataset repository [10], and dataset D2-D4

is generated using Paolo Palmirini’s synthetic data generator [16]. Dataset
D6 is real data from some anonymous retail store and was donated by Tom
Brijs [5]. These datasets have different number of items (129∼16,469) and
different number of transactions (67,557∼1M); the aim is to demonstrate well
the different aspects of the proposed approach.

We have tested the performance of the incremental update against con-
structing the FP-tree from scratch for each of the six datasets while varying
the size of the incremental dataset. To construct the incremental dataset, we
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have randomly chosen x% of the dataset to split the dataset into two parts.
The part with x% of the transactions forms the incremental dataset and the
remaining part with (100-x)% of the transactions form the initial dataset for
which the initial FP-tree is built. This initial FP-tree and the incremental
dataset is the input of the incremental update process. We are measuring how
much time is required to add x% of the transactions to the FP-tree represent-
ing (100-x)% of the transactions. In Figs. 4–9, we have presented the time
comparison of the incremental update against constructing the FP-tree from
scratch for the six different datasets and for five different splits, namely 1, 5,
10, 20 and 50%. For each of these datasets, we have found that by adopting
the incremental approach we can save a substantial amount of time by not
constructing the FP-tree from scratch whenever a database update occurs.
Even when the split size is 50% of the original database, adopting an incre-
mental approach is considerably better that constructing the FP-tree from
scratch.

In Fig. 10, we present a different view of the results presented in Figs. 4–9.
Here, the x-axis like before represents the split percentage of the database,
while the y-axis represents the percentage of time saving achieved by taking
the incremental approach and not constructing the FP-tree from scratch. In
Fig. 10, we observe that the shape of the performance lines for datasets D1

and D2 are identical because of their similarity in the number of different
items (1K); but they have a performance gap because of the difference in the
average size of the transactions. Similar situations are observed for datasets

Fig. 4. Scalability of the incremental update with various sizes of incremental data-
base D1, T40I10D100K (N=1K)
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Fig. 5. Scalability of the incremental update with various sizes of incremental data-
base D2, T10I4D1M (N=1K)

Fig. 6. Scalability of the incremental update with various sizes of incremental data-
base D3, T10I4D100K (N=10K)

D3, D4. In general, the incremental update takes more time when the aver-
age size of the transactions are higher. We also observe another performance
gap based on the number of items present in the dataset. The trend line for
dataset D6, however, is somewhat different because of its excessively large
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Fig. 7. Scalability of the incremental update with various sizes of incremental data-
base D4, T25I10D100K (N=10K)

Fig. 8. Scalability of the incremental update with various sizes of incremental data-
base connect

number of items. The best performance is achieved for dataset D5, where the
number of different items is only 129. These results demonstrate the power of
the proposed method regardless of the number of transactions and attributes
present in the database.
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Fig. 9. Scalability of the incremental update with various sizes of incremental data-
base retail

Fig. 10. Time savings by the incremental update process

5 Summary and Conclusions

In this chapter, we described an incremental update method that can up-
date the FP-tree incrementally without scanning the old dataset and with
a minimal scanning (two scans) of the incremental database. Experimental



www.manaraa.com

376 Muhaimenul et al.

results show that our approach performs considerably better compared to
building the tree from scratch, and thereby achieves a huge amount of time
saving. Following our approach, we can also mine for frequent patterns for
any support threshold because we build the complete FP-tree, with minimum
support specified as one. Our approach works for both addition and deletion
of transactions. We have highly improved the performance of the system by
reimplementing several of the JAVA built-in constructs used in our first im-
plementation. We have also developed a disk based version of the complete
FP-tree; the target is to be able to scale well for huge databases.
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Summary. Definitions of 174 intuitionistic fuzzy logic implications are introduced.
Some of their properties are studied and some open problems, related to them are
formulated.1

1 Introduction: On Some Previous Results

The concept of the intuitionistic fuzzy set (IFS, see [2]) was introduced in 1983
as an extension of Zadeh’s fuzzy set. During the last twenty years intuitionis-
tic fuzzy logics (IFL) was developed. In it two implications were discussed. In
the last two years a new direction of the research in the IFL started with [3],
where ten variants of intuitionistic fuzzy implications are discussed, using as
a basis the book [12] by Georg Klir and Bo Yuan. Other five implications, de-
fined by the author and his colleagues Boyan Kolev and Trifon Trifonov, are
introduced in [1,2,4–6,8–10]. These fifteen implications generate five different
negations, that are a basis for new eight implications introduced in [9]. The
latest ones give rise to negations that coincide with the respective negations
generated by the corresponding implications, i.e., the generating process fin-
ishes. Hence, using this scheme, we obtain 23 implications. Two completely
different implications are introduced in [10], that generated (by the above
meen) four other implications. Here, for the first time we introduce 145 new
implications generated by the first 29 ones. Therefore, we obtain 174 impli-
cations. As we shall show, some of them coincide and finally, we will obtain
99 different implications, a large part of which – with essentially intuitionistic
behaviour.

In IFL if x is a variable (in more general case – propositional form), then
its truth-value is represented by the ordered couple

V (x) = <a, b>,

1 Originally published in Proceedings of the 3rd IEEE Conference on Intelligent
Systems, London, 2006 (see [6]).

K.T. Atanassov: On the Intuitionistic Fuzzy Implications and Negations, Studies in

Computational Intelligence (SCI) 109, 381–394 (2008)
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so that a, b, a + b ∈ [0, 1], where a and b are degrees of validity and of non-
validity of x.

Everywhere below we shall assume that for the three variables x and y
there hold the equalities:

V (x) = <a, b>

V (y) = <c, d>

(a, b, c, d, e, f, a + b, c + d, e + f ∈ [0, 1]).

For the needs of the discussion below we shall define the notion of Intu-
itionistic Fuzzy Tautology (IFT, [1, 2]) by:

x is an IFT if and only if a ≥ b,

while x will be a tautology if and only if a = 1 and b = 0.
We shall define the following relation:

V (x) ≥ V (y) if and only if a ≥ c and b ≤ d.

In some definitions we shall use functions sg and sg:

sg(x) =

{
1 if x > 0
0 if x ≤ 0

,

sg(x) =

{
0 if x > 0
1 if x ≤ 0

.

For two variables x and y operation “conjunction” (&) is defined (see [1,2]
by:

V (x&y) = < min(a, c),max(b, d)>.

In Table 1 we include the implications from [3], but also the implications,
introduced by the author in [1, 2, 4–6, 8–10] with coauthors Boyan Kolev (for
[8]) and Trifon Trifonov (for [9, 10]).

2 Main Results

Following and extending [4,7], we shall define operations negation on the basis
of the above implications. Here, we shall note ith negation that corresponds
to ith implication by ¬i so that

¬ix = x →i 0∗,

where
V (0∗) = <0, 1>.
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Table 1. List of the first 29 intuitionistic fuzzy implications

Notation Name Form of implication

→1 Zadeh < max(b, min(a, c)), min(a, d)>
→2 Gaines-Rescher <1−sg(a − c), d.sg(a − c)>
→3 Gödel <1−(1−c).sg(a − c), d.sg(a − c)>
→4 Kleene-Dienes < max(b, c), min(a, d)>
→5 Lukasiewicz < min(1, b + c), max(0, a + d−1)>
→6 Reichenbach <b + ac, ad>
→7 Willmott < min(max(b, c), max(a, b), max(c, d)), max(min(a, d),

min(a, b), min(c, d))>
→8 Wu <1−(1−min(b, c)).sg(a − c),

max(a, d).sg(a − c).sg(d − b)>
→9 Klir and Yuan 1 <b + a2c, ab + a2d>
→10 Klir and Yuan 2 <c.sg(1−a) + sg(1−a).(sg(1−c) +

b.sg(1−c)), d.sg(1−a) + a.sg(1−a).sg(1−c)>
→11 Atanassov 1 <1−(1−c).sg(a − c), d.sg(a − c).sg(d − b)>
→12 Atanassov 2 < max(b, c), 1−max(b, c)>
→13 Atanassov and

Kolev
<b + c − b.c, a.d>

→14 Atanassov and
Trifonov

<1−(1−c).sg(a − c)−d.sg(a − c).sg(d − b), d.sg(d − b)>

→15 Atanassov 3 <1−(1−min(b, c)).sg(sg(a − c) + sg(d − b))
−min(b, c).sg(a − c).sg(d − b),
1−(1 − max(a, d)).sg(sg(a − c) + sg(d − b)) − max(a, d).
sg(a − c).sg(d − b)>

→16 < max(1−sg(a), c), min(sg(a), d)>
→17 < max(b, c), min(a.b + a2, d)>
→18 < max(b, c), min(1−b, d)>
→19 < max(1−sg(sg(a) + sg(1−b)), c), min(sg(1−b), d)>
→20 < max(1−sg(a), 1−sg(1−sg(c))),

min(sg(a), sg(1−sg(c)))>
→21 < max(b, c(c + d)), min(a(a + b), d(c2 + d + cd))>
→22 < max(b, 1−d), min(1−b, d)>
→23 <1−min(sg(1−b), sg(1−sg(1−d))),

min(sg(1−b), sg(1−sg(1−d)))>
→24 <sg(a − c).sg(d − b), sg(a − c).sg(d−b)>
→25 < max(b.sg(a).sg(1−b), c.sg(d).sg(1−c)),

min(a.sg(1−b), d.sg(1−c))>
→26 < max(sg(1−b), c), min(sg(a), d)>
→27 < max(sg(1−b), sg(c)), min(sg(a), sg(1−d))>
→28 < max(sg(1−b), c), min(a, d)>
→29 < max(sg(1−b), sg(1−c)), min(a, sg(1−d))>

Then we obtain the following negations:

¬1x = <b, a>,
¬2x = <1−sg(a), sg(a)>,
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¬3x = <1−sg(a), sg(a)>,
¬4x = <b, a>,
¬5x = <b, a>,
¬6x = <b, a>,
¬7x = <b, a>,
¬8x = {<x, 1−sg(a), sg(a).sg(1−b)>,
¬9x = <b, ab + a2>,
¬10x = <sg(1−a).b, sg(1−a) + a.sg(1−a)>,
¬11x = <1−sg(a), sg(a).sg(1−b)>,
¬12x = <b, 1−b>,
¬13x = <b, a>,
¬14x = <1−sg(a)−sg(a).sg(1−b), sg(1−b)>,
¬15x = <1−sg(sg(a) + sg(1−b)), 1−sg(1−b)−sg(a).sg(1−b)>,
¬16x = <1−sg(a), sg(a)>,
¬17x = <b, a.b + a2>,
¬18x = <b, 1−b>,
¬19x = <1−sg(sg(a) + sg(1−b)), sg(1−b)>,
¬20x = <1−sg(a)), sg(a))>,
¬21x = <b, a.(a + b)>,
¬22x = <b, 1−b>,
¬23x = <1−sg(1−b), sg(1−b)>,
¬24x = <sg(1−b), sg(a)>,
¬25x = <b.sg(1−b), a.sg(1−b)>,
¬26x = <sg(a), sg(a)>,
¬27x = <sg(a), sg(a)>,
¬28x = <sg(1−b), sg(a)>,
¬29x = <sg(1−b), sg(a)>,

Therefore, the following coincidences are valid for the above negations:

¬1x = ¬1x = ¬4x = ¬5x = ¬6x = ¬7x = ¬10x = ¬13x′

¬2x = ¬2x = ¬3x = ¬8x = ¬11x = ¬13x = ¬16x = ¬20x,
¬3x = ¬9x = ¬17x = ¬21x,
¬4x = ¬12x = ¬18x = ¬22x,
¬5x = ¬14x = ¬15x = ¬19x = ¬23x,
¬6x = ¬24x = ¬26x = ¬27x = ¬28x = ¬29x,
¬7x = ¬25x.

The intuitionistic fuzzy modal operators can be defined (see, e.g., [2]):

V (�x) = <a, 1−a>,

V (♦x) = <1−b, b>.

By analogy to [11] we can introduce two new types of implications:

X2,i = V (<a, b> →2,i <c, d>) = V (�<a, b> →i ♦<c, d>)
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and
X3,i = V (<a, b> →3,i <c, d>) = V (♦<a, b> →i �<c, d>)

for 1 ≤ i ≤ 29.
Therefore, from the above 29 implications we can introduce the following

two groups of new implications, every one of which – with 29 implications:

X2,1 = <1−min(a,max(1−a, d)), min(a, d)>,
X2,2 = <1−sg(a + c−1), d.sg(a + d−1)>,
X2,3 = <1−d.sg(a + c−1), d.sg a(x) + d−1)>,
X2,4 = <1−min(a, d), min(a, d)>,
X2,5 = <min(1, 2−a−d), max(0, a + d−1)>,
X2,6 = <1−a.d, a.d>,
X2,7 = <min(1−min(a, d), max(a, 1−a),max(1−d, d)), max(min(a, d),

min(a, 1−a),min(1−d, d))>,
X2,8 = <1−max(a, d).sg(a(x) + d−1),max(a, d).sg(a + d−1)>,
X2,9 = <1−a + a2−a2.c, a−a2 + a2.d>,
X2,10 = <(1−d).sg(1−a) + sg(1−a).(sg(d + (1−a).sg(d), d.sg(1−a)

+a.sg(1−a).sg(d)>,
X2,11 = <1−d.sg(a + d−1), d.sg(a + d−1)>,
X2,12 = <1−min(a, d), min(a, d)>,
X2,13 = <1−a.d, a.d>,
X2,14 = <(1−d).sg(a + d−1), d.sg(a + d−1)>,
X2,15 = <1−sg(a + d−1), 1−sg(a + d−1)>,
X2,16 = <1−min(sg(a), 1−d), min(sg(a), d)>,
X2,17 = <1−min(a, d), min(a, d)>,
X2,18 = <1−min(a, d), min(a, d)>,
X2,19 = <1−min(sg(a), d), min(sg(a), d)>,
X2,20 = <1−min(sg(a), sg(1−d)), min(sg(a), sg(1−d))>,
X2,21 = <1−min(a, d), min(a, d)>,
X2,22 = <1−min(a, d), min(a, d)>,
X2,23 = <1−min(sg(a), sg(1−d)), min(sg(a), sg(1−d))>,
X2,24 = <sg(a + d−1), sg(a + d−1)>,
X2,25 = <max(sg(a), 1−d), min(sg(a), d)>,
X2,26 = <max(sg(a), d),min(sg(a), d)>,
X2,27 = <max(sg(a), sg(1−d)), min(sg(a), sg(1−d))>,
X2,28 = <max(sg(a), 1−d), min(a, d)>,
X2,29 = <max(sg(a), sg(d)), min(sg(a), sg(1−d))>.

X3,1 = <max(b,min(1−b, c)), 1−max(b, c))>,
X3,2 = <1−sg(1−b−c), (1−c).sg(1−b−c)>,
X3,3 = <1−(1−c).sg(1−b−c), (1−c).sg(1−b−c)>,
X3,4 = <max(b, c), 1−max(b, c)>,
X3,5 = <min(1, b + c),max(0, 1−b−c)>,
X3,6 = <b + c−b.c, (1−b).(1−c)>,
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X3,7 = <min(max(b, c),max(1−b, b), max(c, 1−c)),max(1−max(b, c),
min(1−b, b), min(c, 1−c))>,

X3,8 = <1−(1−min(b, c)).sg(1−b−d), (1−min(b, c).sg(1−b−c)>,
X3,9 = <b + (1−b)2.c, 1−b−(1−b)2.d>,
X3,10 = <c.sg(b) + sg(b).(sg(1−c) + b.sg(1−c)),

(1−c).sg(b) + (1−b).sg(b).sg(1−c)>,
X3,11 = <1−(1−c).sg(1−b−c), (1−c).sg(1−b−c)>,
X3,12 = <max(b, c), 1−max(b, c)>,
X3,13 = <b + c−b.c, 1−b−c + b.c>,
X3,14 = <1−(1−c).sg(1−b−c), (1−c).sg(1−b−c)>,
X3,15 = <1−sg(1−b−c), 1−sg(1−b−c)>,
X3,16 = <1−min(sg(1−d), c),min(sg(1−d), 1−c)>,
X3,17 = <max(b, c), 1−max(b, c)>,
X3,18 = <max(b, c), 1−max(b, c)>,
X3,19 = <max(1−sg(1−d), c), 1−max(1−sg(1−b), c)>,
X3,20 = <1−min(sg(1−d), sg(c)),min(sg(1−d), sg(c))>,
X3,21 = <max(b, c), 1−max(b, c)>,
X3,22 = <max(b, c), 1−max(b, c)>,
X3,23 = <1−min(sg(1−b), sg(c)),min(sg(1−b),sg(c))>,
X3,24 = <sg(1−b−c), sg(1−b−c)>,
X3,25 = <max(sg(1−b),sg(1−c)), 1−max(b, c)>,
X3,26 = <max(sg(1−c),sg(d), min(sg(d), sg(1−a))>,
X3,27 = <max(sg(1−b),sg(c)), min(sg(1−b), sg(c))>,
X3,28 = <max(sg(1−b), c), 1−max(b, c)>,
X3,29 = <max(sg(1−b), sg(1−c)), min(sg(1−b), sg(c))>.

Now, we shall discuss another way for generating of new implications. We
shall use operation “substitution” in the following form for a given proposi-
tional form f(a, . . . , b, x, c, . . . , d):

g(a, . . . , b, y, c, . . . , d) =
x

y
f(a, . . . , b, x, c, . . . , d),

i.e., g(a, . . . , b, y, c, . . . , d) coincide with f(a, . . . , b, y, c, . . . , d) with exception
of the participations of variable x that is changed to variable y. For example

x

y
(a + x) = a + y.

It is very important to note that the changes are made simultaneously, i.e.,
they change all participations of y to x. On the other hand, if we have to
change variable x to variable y, and variable y to variable x, then we will also
do it simultaneously. For example

x

y

y

x
(a + x− y) = a + y − x.
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All above implications generate new implications by operation “substitution”
with the formulae:

X4,i = V (<a, b> →4,i <c, d>) = V

(
a

d

d

a

b

c

c

b
(<a, b> →i <c, d>)

)
,

X5,i = V (<a, b> →5,i <c, d>) = V

(
a

d

d

a

b

c

c

b
(<a, b> →2,i <c, d>)

)
,

X6,i = V (<a, b> →6,i <c, d>) = V

(
a

d

d

a

b

c

c

b
(<a, b> →3,i <c, d>)

)

for 1 ≤ i ≤ 29.
So, we construct the following 87 new implications:

X4,1 = <max(c,min(d, b)), min(d, a))>,
X4,2 = <1−sg(d−b), a.sg(d−b)>,
X4,3 = <1−(1−b).sg(d−b), a.sg(d−b)>,
X4,4 = <max(c, b), min(d, a)>,
X4,5 = <min(1, c + b), max(0, d + a−1)>,
X4,6 = <c + d.b, d.a>,
X4,7 = <min(max(c, b),max(d, c),max(b, a)),max(min(d, a),min(d, c),

min(b, a))>,
X4,8 = <1−(1−min(c, b)).sg(d−b), max(d, a).sg(d−b).sg(a−c)>,
X4,9 = <c + d2b, dc + d2a>,
X4,10 = <b.sg(1−d) + sg(1−d).(sg(1−b) + c.sg(1−b)), a.sg(1−d)

+d.sg(1−d).sg(1−b)>,
X4,11 = <1−(1−b).sg(d−b), a.sg(d−b).sg(a−c)>,
X4,12 = <max(c, b), 1−max(c, b)>,
X4,13 = <c + b−c.b, d.a>,
X4,14 = <1−(1−b).sg(d−b)−a. sg(d−b).sg(a−c), a.sg(a−c)>,
X4,15 = <1−(1−min(c, b)).sg(sg(d−b) + sg(a−c))−min(c, b).sg(d−b)

.sg(d−c), 1−(1−max(d, a)).sg(sg(d−b)+sg(a−c))−max(d, a)
.sg(d−b).sg(a−c)>,

X4,16 = <max(1−sg(d), b), min(sg(d), a)>,
X4,17 = <max(c, b), min(d.c + d2, a)>,
X4,18 = <max(c, b), min(1−c, a)>,
X4,19 = <max(1−sg(sg(d) + sg(1−c)), b), min(sg(1−c), a)>,
X4,20 = <max(1−sg(d),1−sg(1−sg(b))), min(sg(d), sg(1−sg(b)))>,
X4,21 = <max(c, b(b + a)), min(a(d + c), a(b2 + d + ba))>,
X4,22 = <max(c, 1−a), min(1−c, a)>,
X4,23 = <1−min(sg(1−c), sg(1−sg(1−a))), min(sg(1−c),

sg(1−sg(1−a)))>,
X4,24 = <sg(d−b).sg(a−c), sg(d−b).sg(a−c)>,
X4,25 = <max(c.sg(d).sg(1−c), b.sg(a).sg(1−b)), min(d.sg(1−c),

a.sg(1−b))>,
X4,26 = <max(sg(1−c), b), min(sg(d, a)>,
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X4,27 = <max(sg(1−c), sg(b)), min(sg(d), sg(1−a))>,
X4,28 = <max(sg(1−c), νA(x),min(a, d)>,
X4,29 = <max(sg(1−c), sg(1−b)), min(sg(1−a), sg(1−c))>.
X5,1 = <1−min(d, max(1−d, a)), min(d, a))>,
X5,2 = <1−sg(d + b−1), a.sg(d + a−1)>,
X5,3 = <1−a.sg(d + b−1), a.sg(d + a−1)>,
X5,4 = <1−min(d, a), min(d, a)>,
X5,5 = <min(1, 2−d−a), max(0, d + a−1)>,
X5,6 = <1−d.a, d.a>,
X5,7 = <min(1−min(d, a), max(d, 1− d), max(1− a, a)),

max(min(d, a), min(d, 1− d), min(1− a, a))>,
X5,8 = <1−max(d, a). sg(d + a− 1), max(d, a).sg(d + a− 1)>,
X5,9 = <1− d + d2 − d2.b, d− d2 + d2.a>,
X5,10 = <(1−a).sg(1− d)+ sg(1− d).(sg(a+(1− d).sg(a), a.sg(1−d)

+d.sg(1−d).sg(a)>,
X5,11 = <1− a.sg(d + a− 1), a.sg(d + a− 1)>,
X5,12 = <1−min(d, a), min(d, a)>,
X5,13 = <1− d.a, d.a>,
X5,14 = <(1− a).sg(d + a− 1), a.sg(d + a− 1)>,
X5,15 = <1− sg(d + a− 1), 1− sg(d + a− 1)>,
X5,16 = <1−min(sg(d), 1− a), min(sg(d), a)>,
X5,17 = <1−min(d, a), min(d, a)>,
X5,18 = <1−min(d, a), min(d, a)>,
X5,19 = <1−min(sg(d), a), min(sg(d), a)>,
X5,20 = <1−min(sg(d), sg(1− a)), min(sg(d), sg(1− a))>,
X5,21 = <1−min(d, a), min(d, a)>,
X5,22 = <1−min(d, a), min(d, a)>,
X5,23 = <1−min(sg(d), sg(1− a)), min(sg(d), sg(1− a))>,
X5,24 = <sg(d + a− 1), sg(d + a− 1)>,
X5,25 = <max(sg(d), a), min(d, a)>,
X5,26 = <max(sg(d), 1− a), min(sg(d, a)>,
X5,27 = <max(sg(d), sg(1− a)), min(sg(d), sg(1− a))>,
X5,28 = <max(sg(d), 1− a), min(a, d)>,
X5,29 = <max(sg(a), sg(d)), min(sg(νB(x)), sg(1− a))>.
X6,1 = <max(c,min(1− c, b)), 1−max(c, b))>,
X6,2 = <1− sg(1− c− b), (1− b).sg(1− c− b)>,
X6,3 = <1− (1− b).sg(1− c− b), (1− b).sg(1− c− b)>,
X6,4 = <max(c, b), 1−max(c, b)>,
X6,5 = <min(1, c + b), max(0, 1− c− b)>,
X6,6 = <c + b− c.b, (1− c).(1− b)>,
X6,7 = <min(max(c, b), max(1− c, c), max(b, 1− b)),

max(1−max(c, b), min(1− c, c), min(b, 1− b))>,
X6,8 = <1− (1−min(c, b)).sg(1− c−a), (1−min(c, b).sg(1− c− b)>,
X6,9 = <c + (1− c)2.b, 1− c− (1− c)2.a>,
X6,10 = <b.sg(c) + sg(c).(sg(1− b) + c.sg(1− b)),

(1− b).sg(c) + (1− c).sg(c).sg(1− b)>,
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X6,11 = <1− (1− b).sg(1− c− b), (1− b).sg(1− c− b)>,
X6,12 = <max(c, b), 1−max(c, b)>,
X6,13 = <c + b− c.b, 1− c− b + c.b>,
X6,14 = <1− (1− b).sg(1− c− b), (1− b).sg(1− c− b)>,
X6,15 = <1− sg(1− c− b), 1− sg(1− c− b)>,
X6,16 = <1−min(sg(1− a), b), min(sg(1− a), 1− b)>,
X6,17 = <max(c, b), 1−max(c, b)>,
X6,18 = <max(c, b), 1−max(c, b)>,
X6,19 = <max(1− sg(1− a), b), 1−max(1− sg(1− c), b)>,
X6,20 = <1−min(sg(1− a), sg(b)), min(sg(1− a), sg(b))>,
X6,21 = <max(c, b), 1−max(c, b)>,
X6,22 = <max(c, b), 1−max(c, b)>,
X6,23 = <1−min(sg(1− c), sg(b)), min(sg(1− c), sg(b))>,
X6,24 = <sg(1− c− b), sg(1− c− b)>,
X6,25 = <max(sg(1− c), sg(1− b)), 1−max(c, b)>}.
X6,26 = <max(sg(1− b), c), min(sg(a, sg(1− d))>,
X6,27 = <max(sg(1− c), sg(b)), min(sg(1− c), sg(b))>.
X6,28 = <max(sg(1− c), νA(x)), 1−max(b, c)>,
X6,29 = <max(sg(1− b), sg(1− c)), min(sg(1− c), sg(b))>.

Let
V (E∗) = <1, 0>.

Theorem 1. All above implications are extensions of ordinary first-order
logic implication.

The validity of this theorem follows from the fact that for every i(1 ≤ i ≤
6) and for every j(1 ≤ j ≤ 29) it can be checked that

(a) V (O∗ →i,j O∗) = V (E∗),
(b) V (O∗ →i,j E∗) = V (E∗),
(c) V (E∗ →i,j O∗) = V (O∗),
(d) V (E∗ →i,j E∗) = V (E∗),

where →1,j=→j .

Theorem 2. The following implications coincide (we shall denote this fact by
“ =”):

(1) →4=→4,4

(2) →5=→4,5

(3) →7=→4,7

(4) →12=→3,4=→3,12=→3,17=→3,18=→3,21=→3,22=→4,12=→6,4=→6,12

=→6,17=→6,18=→6,21=→6,22

(5) →13=→4,13

(6) →15=→4,15

(7) →24=→4,24

(8) →25=→4,25
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(9) →2,3=→2,11=→5,14

(10) →2,4=→2,12=→2,17=→2,18=→2,21=→2,22=→5,4=→5,12=→5,17=→5,18

=→5,21=→5,22

(11) →2,5=→5,5

(12) →2,6=→2,13=→5,6=→5,13

(13) →2,7=→5,7

(14) →2,8=→5,8

(15) →2,15=→2,24=→5,15=→5,24

(16) →2,16=→2,19=→2,26

(17) →2,20=→2,23=→2,27

(18) →2,25=→5,25

(19) →3,3=→3,11=→3,14

(20) →3,5=→6,5

(21) →3,6=→3,13=→6,6=→6,13

(22) →3,7=→6,7

(23) →3,8=→6,8

(24) →3,15=→3,24=→6,15=→6,24

(25) →3,16=→3,19=→3,26

(26) →3,20=→3,23=→3,27

(27) →3,25=→6,25

(28) →5,3=→5,11=→5,14

(29) →5,16=→5,19=→5,26

(30) →5,20=→5,23=→5,27

(31) →6,3=→6,11=→6,14

(32) →6,16=→6,19=→6,26

(33) →6,20=→6,23=→6,27

The check of these equalities is direct.
This Theorem permits us to construct a new table with all the different

implications with notations between 30 and 99.

Table 2. List of the new 70 intuitionistic fuzzy implications

Notation Form of implication

→30 <1 − min(a, max(1 − a, d)), min(a, d)>
→31 <1 − sg(a + c − 1), d.sg(a + d − 1)>
→32 <1 − d.sg(a + c − 1), d.sg a(x) + d − 1)>
→33 <1 − min(a, d), min(a, d)>
→34 < min(1, 2 − a − d), max(0, a + d − 1)>
→35 <1 − a.d, a.d>
→36 < min(1 − min(a, d), max(a, 1 − a), max(1 − d, d)), max(min(a, d),

min(a, 1 − a), min(1 − d, d))>
→37 <1 − max(a, d).sg(a(x) + d − 1), max(a, d).sg(a + d − 1)>
→38 <1 − a + a2 − a2.c, a − a2 + a2.d>
→39 <(1 − d).sg(1 − a) + sg(1 − a).(sg(d + (1 − a).sg(d), d.sg(1 − a)

+a.sg(1 − a).sg(d)>
→40 <1 − sg(a + d − 1), 1 − sg(a + d − 1)>
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Table 2. (Continued)

Notation Form of implication

→41 <1 − min(sg(a), 1 − d), min(sg(a), d)>
→42 <1 − min(sg(a), sg(1 − d)), min(sg(a), sg(1 − d))>
→43 < max(sg(a), 1 − d), min(sg(a), d)>
→44 < max(sg(a), 1 − d), min(a, d)>
→45 < max(sg(a), sg(d)), min(sg(a), sg(1 − d))>
→46 < max(b, min(1 − b, c)), 1 − max(b, c))>
→47 <1 − sg(1 − b − c), (1 − c).sg(1 − b − c)>
→48 <1 − (1 − c).sg(1 − b − c), (1 − c).sg(1 − b − c)>
→49 < min(1, b + c), max(0, 1 − b − c)>
→50 <b + c − b.c, (1 − b).(1 − c)>
→51 < min(max(b, c), max(1 − b, b), max(c, 1 − c)),

max(1 − max(b, c), min(1 − b, b), min(c, 1 − c))>
→52 <1 − (1 − min(b, c)).sg(1 − b − d), (1 − min(b, c).sg(1 − b − c)>
→53 <b + (1 − b)2.c, 1 − b − (1 − b)2.d>
→54 <c.sg(b) + sg(b).(sg(1 − c) + b.sg(1 − c)), (1 − c).sg(b) + (1 − b).sg(b)

.sg(1 − c)>
→55 <1 − sg(1 − b − c), 1 − sg(1 − b − c)>
→56 <1 − min(sg(1 − d), c), min(sg(1 − d), 1 − c)>
→57 <1 − min(sg(1 − d), sg(c)), min(sg(1 − d), sg(c))>
→58 < max(sg(1 − b), sg(1 − c)), 1 − max(b, c)>
→59 < max(sg(1 − b), c), 1 − max(b, c)>
→60 < max(sg(1 − b), sg(1 − c)), min(sg(1 − b), sg(c))>
→61 < max(c, min(d, b)), min(d, a))>
→62 <1 − sg(d − b), a.sg(d − b)>
→63 <1 − (1 − b).sg(d − b), a.sg(d − b)>
→64 <c + d.b, d.a>
→65 <1 − (1 − min(c, b)).sg(d − b), max(d, a).sg(d − b).sg(a − c)
→66 <c + d2b, dc + d2a
→67 <b.sg(1−d)+sg(1−d).(sg(1− b)+ c.sg(1− b)), a.sg(1−d)+d.sg(1−

d).sg(1 − b)>
→68 <1 − (1 − b).sg(d − b), a.sg(d − b).sg(a − c)>
→69 <1 − (1 − b).sg(d − b) − a.sg(d − b).sg(a − c), a.sg(a − c)>
→70 < max(1 − sg(d), b), min(sg(d), a)>
→71 < max(c, b), min(d.c + d2, a)>
→72 < max(c, b), min(1 − c, a)>
→73 < max(1 − sg(sg(d) + sg(1 − c)), b), min(sg(1 − c), a)
→74 < max(1 − sg(d), 1 − sg(1 − sg(b))), min(sg(d), sg(1 − sg(b)))>
→75 < max(c, b(b + a)), min(a(d + c), a(b2 + d + ba)
→76 < max(c, 1 − a), min(1 − c, a)>
→77 <1−min(sg(1−c), sg(1−sg(1−a))), min(sg(1−c), sg(1−sg(1−a)))>
→78 < max(sg(1 − c), b), min(sg(d, a)>
→79 < max(sg(1 − c), sg(b)), min(sg(d), sg(1 − a))>
→80 < max(sg(1 − c), νA(x), min(a, d)>
→81 < max(sg(1 − c), sg(1 − b)), min(sg(1 − a), sg(1 − c))>
→82 <1 − min(d, max(1 − d, a)), min(d, a))>
→83 <1 − sg(d + b − 1), a.sg(d + a − 1)>
→84 <1 − a.sg(d + b − 1), a.sg(d + a − 1)>
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Table 2. (Continued)

Notation Form of implication

→85 <1 − d + d2 − d2.b, d − d2 + d2.a>
→86 <(1− a).sg(1− d) + sg(1− d).(sg(a +(1− d).sg(a), a.sg(1− d) + d.sg(1−

d).sg(a)>
→87 <1 − min(sg(d), 1 − a), min(sg(d), a)>
→88 <1 − min(sg(d), sg(1 − a)), min(sg(d), sg(1 − a))>
→89 < max(sg(d), 1 − a), min(a, d)>
→90 < max(sg(a), sg(d)), min(sg(νB(x)), sg(1 − a))>
→91 < max(c, min(1 − c, b)), 1 − max(c, b))>
→92 <1 − sg(1 − c − b), (1 − b).sg(1 − c − b)>
→93 <1 − (1 − b).sg(1 − c − b), (1 − b).sg(1 − c − b)>
→94 <c + (1 − c)2.b, 1 − c − (1 − c)2.a>
→95 <b.sg(c) + sg(c).(sg(1 − b) + c.sg(1 − b)), (1 − b).sg(c) + (1 − c).sg(c)

.sg(1 − b)>
→96 <1 − min(sg(1 − a), b), min(sg(1 − a), 1 − b)>
→97 <1 − min(sg(1 − a), sg(b)), min(sg(1 − a), sg(b))>
→98 < max(sg(1 − c), νA(x)), 1 − max(b, c)>
→99 < max(sg(1 − b), sg(1 − c)), min(sg1 − c), sg(b))>

3 Conclusion and Open Problems

At the moment the following problems are open:

1. To construct other implications.
2. To study properties of all implications and negations, and especially, to

determine the implications and negations that satisfy axioms of intuition-
istic logic (see, e.g., [13]).

3. To compare the different implications, to construct a graph of their orders
and to study its properties.

4. To study validity of Klir and Yuan’s axioms for all implications.

→ 13

→ 5

→ 9

→ 1

→ 8
→ 3

→ 2

→ 15

→ 14

→ 7

→ 12→ 10

→ 6 → 4
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For example, following [5] we can show the relations between the first
15 implications from Table 1. If the implication →i is located on a higher
position than implication →j this means that for all a, b, c, d ∈ [0, 1] so that
a + b, c + d ∈ [0, 1]:

V (<a, b> →i <c, d>) ≥ V (<a, b> →j <c, d>).

The author hopes that the answers of these problems will be known in
near future. This will give possibility to be determined some the most suit-
able implications. Of course, one of them will be the classical (Kleene-Dienes)
implication. But the future will show the other ones, that will have intuition-
istic behaviour.

When the concept of IFS was introduced, Georgi Gargov (1947–1996), who
gave the name of this fuzzy set extension and the author, thought that the
intuitionistic idea is best embodied in the form of elements of the IFSs with
their two degrees – degree of membership or of validity, or of correctness, etc.
and degree of non-membership or of non-validity, or of incorrectness, etc. . .
Because of this, for a long period of time the author used the operations for
“classical” negation() and “classical” implication (), only. In the last couple
of years it became clear that the operations over intiutuinostic fuzzy objects
can be of intuitionistic nature themselves and that was the reason for the
appearance of the new results. Now it is known for which of the implications
from Table 1, and the negations the following formulas are valid:

x → ¬¬x,

¬¬x → x.

And that would be extended to all the implications from Table 2.
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Summary. We present an axiomatic approach to the probability theory on IF-
sets = intuitionistic fuzzy sets = Atanassov sets (Intuitionistic Fuzzy Sets: Theory
and Applications. Physica, New York, 1999). Starting with two constructive defin-
itions (Issues in Intelligent Systems: Paradigms, EXIT, Warszawa 2005, pp. 63–58;
Soft Methods in Probability, Statistics and Data Analysis, Physica, New York 2002,
pp. 105–115) we consider a theory including not only the special cases but also the
general form of the probabilities on IF-sets. Moreover an embedding of the theory
to the probability theory on MV-algebras is given. This fact enables to use the well
developed probability theory on MV-algebras for constructing probability theory on
IF-events.

1 Introduction

Although there are different opinions about IF-events, the following definitions
are accepted generally [1, 3, 4]. Let (Ω,S) be a measurable space. By an IF-
event [4] we mean any pair

A = (µA, νA)

of S-measurable functions, such that µA ≥ 0, νA ≥ 0, and

µA + νA ≤ 1.

The function µA is the membership function and the function νA the non-
membership function. The family F of all IF-events is ordered by the following
way:

A ≤ B ⇐⇒ µA ≤ µB , νA ≥ νB.

Evidently the notion of an IF-event is a natural generalization of the notion of
the fuzzy events. Given a fuzzy event µA, the pair (µA, 1−µA) is an IF-event,
so IF-events can be seen as generalizations of fuzzy events. We hence want to
define probability on IF-events generalizing probability on fuzzy events. And
B. Riečan: On the Probability Theory on the Atanassov Sets, Studies in Computational

Intelligence (SCI) 109, 395–413 (2008)
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actually, two constructions were proposed independently [3, 4]. It is interesting
that both definitions can be regarded as a special case of a descriptive defini-
tion [12, 13] given axiomatically (see Definition 2.3). This axiomatic definition
has been based on the Lukasiewicz connectives

a⊕ b = min(a + b, 1),
a# b = max(a + b− 1, 0).

The operations can be naturally extended to IF-events by the following way.
If A = (µA, νA) and B = (µB , νB) then

A⊕B = (µA ⊕ µB , νA # νB)
A#B = (µA # µB , νA ⊕ νB)

It is easy to see that in the case of a fuzzy set A = (µA, 1−µA) the Lukasiewicz
operations are obtained. Similarly as in the classical case and in the fuzzy case,
probability is a mapping (in our case from F to the unit interval) which is
continuous, additive and satisfies some boundary conditions. Here the main
difference is in additivity. There are infinitely many possibilities how to define
additivity

m(A) + m(B) = m(S(A,B)) + m(T (A,B))

where

S(A,B) = (S(µA, µB), T (νA, νB))

S, T : [0, 1]2 → [0, 1]

being such binary operations that

S(u, v) + T (1− u, 1− v) ≤ 1.

In the present contribution we have chosen only two possibilities: the
Lukasiewicz S(a, b) = a⊕ b, T (a, b) = a# b, and the Zadeh

S(a, b) = a ∨ b = max(a, b),
T (a, b) = a ∧ b = min(a, b).

Namely, in these two choices we are able to formulate a meaningful theory
including such fundamental assertions as the law of large numbers (a bridge
between frequency and probability) or central limit theorem (as a possible
starting point to statistical inference). The main idea of the chapter is in
the embedding of the family F into an appropriate MV-algebra. Although
the MV-algebra considered in our IF-case is very simple, it would be not very
economic to work only with the special case and do not use some known results
contained in the general MV-algebra probability theory. On the other hand
the simple formulations in the IF-events case could lead to a larger variety of
possible applications.
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The Kolmogorov probability theory has three fundamental notions: prob-
ability, random variable, and expectation. In our fuzzy case an analogous sit-
uation occurs. The existence of the joint observable plays the crucial role. It
is interesting that the corresponding existence theorems (for the Lukasiewicz
connectives in Theorem 5.5, for the Zadeh connectives in [17]) have been
proved by some thoroughly different methods. Therefore it is hardly to ex-
pect that there exists a general methods working for a larger set of pairs
(S, T ). In this moment this is an open problem.

Some ideas of the chapter has been used separately in previous author
papers (e.g. the embedding theorem in the chapter [15] about entropy of
dynamical systems, the representation theorem in [16]) and here they are
presented in a simple and clear way as a source for possible applications.

2 Probability on IF-Events

First recall some basic definitions. By an IF-set we consider a pair A =
(µA, νA) of functions µA, νA : Ω → [0, 1] such that

µA + νA ≤ 1.

µA is called a membership function of A, νA a nonmembership function of
A. If (Ω,S, p) is a probability space and µA, νA are S-measurable, then A is
called and IF-event and the probability of A has been defined by the following
two definitions.

Definition 2.1 (Grzegorzewski, Mrowka [4]). The probability P(A) of an
IF-event A is defined as the interval

P(A) =
[∫

Ω

µA dp, 1−
∫

Ω

νA dp

]
.

Definition 2.2 (Gersternkorn, Manko [3]). The probability P(A) of an
IF-event A is defined as the number

P(A) =
1
2

(∫
Ω

µA dp + 1−
∫

Ω

νA dp

)
.

Both definitions are special cases of the following one [10, 12, 13]. Denote
by F the family of all IF-events, and by J the family of all compact intervals.
In the following definition we shall assume that [a, b] + [c, d] = [a + c, b + d],
and [an, bn] ↗ [a, b], if an ↗ a, bn ↗ b. On the other hand we define

(µA, νA)⊕ (µB , νB) = (µA ⊕ µB , νA # νB)
(µA, νB)# (µB , νB) = (µA # µB , νA ⊕ νB)
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where

f ⊕ g = min(f + g, 1) and f # g = max(f + g − 1, 0).

Moreover
(µAn

, νAn
↗ (µA, νA)

means
µAn

↗ µA, νAn
↘ νA.

Definition 2.3 ([10]). An IF-probability on F is a mapping P : F → J
satisfying the following conditions:

(i) P((0, 1)) = [0, 0], P((1, 0)) = [1, 1]
(ii) P((µA, νA)) + P((µB , νB)) = P((µA, νA)) ⊕ (µB , νB)) + P((µA, νA) #

(µB , νB))
for any (µA, νA), (µB , νB) ∈ F

(iii) (µAn
, νAn

) ↗ (µA, νA) =⇒ P((µAn
, νAn

)) ↗ P((µA, νA))

Example 2.4. The function from Definition 2.1 satisfies the conditions stated
in Definition 2.3. It was proved in [4, 12]. Moreover, in [12] an axiomatic
characterization of the example was given. On the other hand the general
definition represents a larger variety as the singular example [8].

Example 2.5. If we put P((µA, νA)) =
{

1
2 (
∫

Ω
µA dp + 1−

∫
Ω

νA dp)
}
, then P

satisfies all conditions stated in Definition 2.3. We shall demonstrate it on the
property (ii):

P((µA, νA)⊕ (µB , νB)) + P((µA, νA)# (µB , νB))
= P(µA ⊕ µB , νA # νB) + P(µA # µB , νA ⊕ νB)

=
1
2

(∫
Ω

µA ⊕ µB dp + 1−
∫

Ω

νA # νB

)
dp

+
1
2

(∫
Ω

µA # µB dp + 1−
∫

Ω

νA ⊕ νB dp

)
.

If we use the identity x⊕ y + x# y = x + y, we obtain that

P((µA, νA)⊕ (µB , νB)) + P((µA, νA)# (µB , νB))

=
1
2

∫
Ω

(µA ⊕ µB + µA # µB + 2− (νA # νB + νA ⊕ νB)) dp

=
1
2

∫
Ω

(µA + µB + 2− (νA + νB)) dp

=
1
2

(∫
Ω

µA dp + 1−
∫

Ω

νB dp

)
+

1
2

(∫
Ω

µB dp + 1−
∫

Ω

νB dp

)
= P((µA, νA)) + P((µB , νB)).
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Anyway, we have here two points of view: probability as a real function
(Definition 2.2) and probability as an interval-valued function (Definition 2.1).
Therefore in the first case a special terminology will be introduced (at least
in the chapter).

Definition 2.6. A function p : F → [0, 1] will be called a state if the following
conditions are satisfied:

(i) p((0, 1)) = 0, p((1, 0)) = 1
(ii) p((µA, νA)⊕(µB , νB))+p((µA, νA)#(µB , νB)) = p((µA, νA))+p((µB , νB))

for any (µA, νA), (µB , νB) ∈ F
(iii) (µAn

, νAn
) ↗ (µA, νA) =⇒ p((µAn

, νAn
)) ↗ p((µA, νA))

It is easy to see that the preceding definitions are equivalent in the follow-
ing sense.

Theorem 2.7. Let P : F → J be a mapping. Denote P(A) = [P�(A),P�(A)]
for any A ∈ F . Then P is a probability if and only if P�, P� are states.

3 MV-Algebras

MV-algebra is an algebraic system (M,⊕,#,¬, 0, 1), where ⊕,# are binary
operations, ¬ an unary operation, and 0, 1 fixed elements such that the fol-
lowing properties are satisfied: ¬0 = 1, ¬1 = 0, x⊕1 = 1, x#y = ¬(¬x⊕¬y)
and y ⊕ ¬(y ⊕ ¬x) = x⊕ ¬(x⊕ ¬y) for all x, y ∈ M .

Example 3.1. Put M = [0, 1], a⊕ b = min(a + b, 1), a# b = max(a + b− 1, 0),
¬a = 1− a. This structure is a typical example of an MV-algebra.

In every MV-algebra M the binary relation ≤ given by a ≤ b if and only
if a# ¬b = 0, is a partial order such that M is a distributive lattice.

By the Mundici theorem [2] any MV-algebra can be obtained by a similar
way as it was shown in Example 3.1, of course, instead of the set R of reals
an l-group must be considered. Recall that an l-group is a system (G,+,≤)
such that (G,+) is an Abelian group, (G,≤) is a lattice and a ≤ b implies
a + c ≤ b + c.

Up to isomorphism, every MV-algebra (M,⊕,#,¬, 0, 1) can be identified
with the unit interval [0, u](u is a strong unit in G, i.e. to any a ∈ M there
exists n ∈ N such that nu ≥ a) such that

(a⊕ b) = (a + b) ∧ u

a# b = (a + b− u) ∨ 0
¬a = u− a.

Consider now the family F of all IF-events on a measurable space (Ω,S), i.e.
such pairs A = (µA, νA) of S-measurable functions that 0 ≤ µA, 0 ≤ νA,
µA + νA ≤ 1.
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We shall construct an MV-algebra M and then embed F to M and show
that there exists one-to-one correspondence between probabilities on F and
probabilities on M.

Definition 3.2. Define M = {(µA, νA);µA, νA are S-measurable, µA, νA :
Ω → [0, 1]} together with operations

(µA, νA)⊕ (µB , νB) = (µA ⊕ µB , νA # νB),
(µA, νA)# (µB , νB) = (µA # µB , νA ⊕ νB),

¬(µA, νA) = (1− µA, 1− νA).

Theorem 3.3. The system (M,⊕,#,¬, 0, 1) is an MV-algebra.

Proof. Consider the set G = {(f, g); f, g : Ω → R, f, g are measurable}. The
ordering≤ is induced by the IF -ordering, hence (f, g) ≤ (h, k) ⇐⇒ f ≤ h, g ≥
k. Evidently (G,≤) is a lattice, (f, g)∨ (h, k) = (f ∨ h, g ∧ k), (f, g)∧ (h, k) =
(f ∧ h, g ∨ k). Now we shall define the group operation + by the following
formula:

(f, g) + (h, k) = (f + h, g + k − 1).

It is not difficult to see that + is commutative and associative, and (0, 1) is
the neutral element. The inverse element to (f, g) is the pair (−f, 2−g), since

(f, g) + (−f, 2− g) = (f − f, g + 2− g − 1) = (0, 1),

therefore

(f, g)− (h, k) = (f, g) + (−h, 2− k) = (f − h, g − k + 1).

If we put u = (1, 0), then M = {(f, g) ∈ G; (0, 1) ≤ (f, g) ≤ (1, 0)} =
{(f, g) ∈ G; 0 ≤ f ≤ 1, 0 ≤ g ≤ 1} with the MV -algebra operations, i.e.

(f, g)⊕ (h, k) = ((f, g) + (h, k)) ∧ (1, 0) = (f + h, g + k − 1) ∧ (1, 0)
= ((f + h) ∧ 1, (g + g − 1) ∨ 0) = (f ⊕ h, g # k),

and similarly
(f, g)# (h, k) = (f # h, g ⊕ k).

We see that M is an MV-algebra with respect to the Mundici theorem. ��

Definition 3.4. A function p : M → [0, 1] is a state if the following condi-
tions are satisfied:

(i) p((0, 1)) = 0, p((1, 0)) = 1
(ii) p((µA, νA)) + p((µB , νB)) = p((µA, νA)) ⊕ (µB , νB)) + p((µA, νA) #

(µB , νB)) for any (µA, νA), (µB , νB) ∈ F
(iii) (µAn

, νAn
) ↗ (µA, νA) =⇒ p((µAn

, νAn
)) ↗ p((µA, νA))
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Theorem 3.5. To any state p : F → [0, 1] there exists exactly one state
p̄ : M→ [0, 1] such that p̄|F = p.

Proof. The function p̄ can be defined by the equality p̄((µA, νA)) =
p((µA, 0))− p((0, 1− νA)). First we prove that p̄ is an extension of p.

Let (µA, νA) ∈ F , i.e. µA + νA ≤ 1. Then

(µA, νA)# (0, 1− νA) = (µA # 0, νA ⊕ (1− νA)
= ((µA + 0− 1) ∨ 0, (νA + 1− νA) ∧ 1) = (0, 1)

On the other hand

(µA, νA)⊕ (0, 1− νA) = (µA ⊕ 0, νA # (1− νA))
= ((µA + 0) ∧ 1, (νA + 1− νA − 1) ∨ 0) = (µA, 0).

Therefore by (ii)

p((µA, νA)) + p((0, 1− νA)) = p((µA, 0)) + p((0, 1)) = p((µA, 0)),

hence
p((µA, νA)) = p((µA, 0))− p((0, 1− νA)) = p̄((µA, νA)).

It follows that p̄ satisfies (i).
We are going to prove additivity (ii).
By the definition

p̄((µA, νA)) + p̄((µB , νB)) = p((µA, 0))− p((0, 1− νA)) + p((µB , 0))
− p((0, 1− νB)). (3.5.1)

On the other hand

p̄((µA, νA)⊕ (µB , νB)) = p̄((µA ⊕ µB , νA # νB))
= p((µA ⊕ µB , 0))− p((0, 1− νA # νB), (3.5.2)

p̄((µA, νA)# (µB , νB)) = p̄((µA # µB , νA ⊕ νB))
= p((µA # µB , 0))− p((0, 1− (νA ⊕ νB))).

Of course,

p((µA, 0)) + p((µB , 0)) = p((µA, 0)⊕ (µB , 0)) + p((µA, 0)# (µB , 0))
= p((µA ⊕ µB , 0# 0)) + p((µA # µB , 0⊕ 0))
= p((µA ⊕ µB , 0)) + p((µA # µB , 0)),

hence

p(µA, 0)) + p((µB , 0)) = p((µA ⊕ µB.0)) + p((µA # µB , 0)). (3.5.3)
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Further

p((0, 1− νA)) + p((0, 1− νB))
= p((0, 1− νA)⊕ (0, 1− νB)) + p((0, 1− νA)# (0, 1− νB))
= p((0⊕ 0, (1− νA)# (1− νB))) + p((0# 0, (1− νA)⊕ (1− νB)))
= p((0, 1− (νA ⊕ νB))) + p((0, 1− (νA # νB))),

hence

p((0, 1− νA)) + p((0, 1− νB)) = p((0, 1− (νA ⊕ νB)))
+ p((0, 1− (νA # νB))). (3.5.4)

By (3.5.1), (3.5.2), (3.5.3) and (3.5.4) it follows

p̄((µA, νA)) + p̄((µB , νB)) = p̄((µA, νA))⊕ (µB , νB)) + p̄((µA, νA)# (µB , νB)).

The next step of our proof is proving the continuity of p̄.
Let (µAn

, νAn
) ↗ (µA, νA), i.e. µAn

↗ µA, νAn
↘ νA. Then (µAn

, 0) ↗
(µA, 0), hence

p((µAn
, 0)) ↗ p((µA, 0)). (3.5.5)

On the other hand the relation νAn
↘ νA implies 1−νAn

↗ (0, 1−νA). Since
νAn

↘ νA, we have (0, νAn
) ↗ (0, νA), hence p((0, νAn

)) ↗ p((0, νA)). Of
course

(0, νB)# (0, 1− νB) = (0# 0, νB ⊕ (1− νB)) = (0, 1),
(0, νB)⊕ (0, 1− νB) = (0⊕ 0, νB # (1− νB)) = (0, 0).

Therefore

p((0, νB)) + p((0, 1− νB)) = p((0, 0)) = α.

p((0, 1− νAn
)) = α− p((0, νAn

)) ↗ α− p((0, νA)) = p((0, 1− νA)),

hence
−p((0, 1− νAn

)) ↗ −p((0, 1− νA)). (3.5.6)

The relations (3.5.5) and (3.5.6) implies

p̄((µAn
, νAn

)) = p((µAn
, 0))− p((0, 1− νAn

)) ↗ p((µA, 0))− p(0, 1− νA))
= p̄((µA, νA)).

and the continuity of p̄ is proved.
Now we shall show the uniqueness of the extension.
Let q be any state on M such that p | F = p. Since

(0, 1− νA)# (µA, νA) = (0, 1),
(0, 1− νA)⊕ (µA, νA) = (µA, 0),
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we obtain

p((µA, 0)) = q((µA, 0)) = q((0, 1− νA)) + q((µA, νA))
= p((0, 1− νA)) + q((µA, νA)),

hence q((µA, νA)) = p((µA, 0))− p((0, 1− νA)) = p̄((µA, νA)). ��

Theorem 3.6. To any probability P : F → J there exists a probability P̄ :
M→ J such that P̄|F = P.

Proof. Put P(A) = [P�(A), P�(A)]. By Theorem 2.7 P�, P� are states. By
Theorem 3.5 there exist states P̄�, P̄� : M → [0, 1] such that P̄�|F = P�,
P̄�|F = P�. For A = (µA, νA) ∈M put

P̄(A) = [P̄�(A), P̄�(A)].

If A ∈ F , then

P̄(A) = [P̄�(A), P̄�(A)] = [P�(A),P�(A)] = P(A),

hence P̄|F = P. If A,B ∈M, then

P̄�(A⊕B) + P̄�(A#B) = P̄�(A) + P̄�(B),

P̄�(A⊕ b) + P̄�(A#B) = P̄�(A) + P̄�(B),

hence

P̄(A⊕B) + P̄(A#B) = [P̄�(A⊕B), P̄�(A⊕B)] + [P̄�(A#B), P̄�(A#B)]
= [P̄�(A) + P̄�(B), P̄�(A) + P̄�(B)]
= [P̄�(A), P̄�(A)] + [P̄�(B), P̄�(B)] = P̄(A) + P̄(B).

Finally, let An ↗ A. Then P̄�(An) ↗ P̄�(A), P̄�(An) ↗ P̄�(A), hence

P̄(An) = [P̄�(An), P̄�(An)] ↗ [P̄�(A), P̄�(A)] = P̄(A).

��

4 Weak Probability

Definition 4.1. The weak probability P : F → J is defined here by the fol-
lowing axioms:

(i) P((1, 0)) = [1, 1],P((0, 1)) = [0, 0]
(ii) if A#B = (0, 1), then P(A⊕B) = P(A) + P(B)
(iii) if An ↗ A, then P(An) ↗ P(A)
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The weak probability can be represent in the form P : F → J

P(A) =
[
f

(∫
µA dP,

∫
νA dP

)
, g

(∫
µA dP,

∫
νA dP

)]
.

The main result is obtained in the following theorem.

Theorem 4.2. To any weak probability P : F → J there exist α, β ∈ [0, 1],
α ≤ β such that

P((µA, νA))

=

[
(1 − α)

∫
µAdP + α

(
1 −

∫
νAdP

)
, (1 − β)

∫
µAdP + β

(
1 −

∫
νAdP

)]
.

Proof. See [16]. ��

Denote as before P(A) = [P�(A),P�(A)]. As a consequence of Theorem 4.2
one can obtain that any weak probability is probability.

Theorem 4.3. Any weak probability (in the sense of Definition 4.1) is a prob-
ability (in the sense of Definition 2.3).

Proof. Consider (µA, νA) ∈ F , (µB , νB) ∈ F . Then there exists such α ∈ [0, 1]
that

P�(µA, νA) = (1− α)
∫

Ω

µA dP + α

(
1−
∫

Ω

νA dP

)

P�(µB , νB) = (1− α)
∫

Ω

µB dP + α

(
1−
∫

Ω

νB dP

)

P�(µA⊕B , νA) = (1− α)
∫

Ω

µA⊕B dP + α

(
1−
∫

Ω

νA⊕B dP

)

P�(µA�B , νA) = (1− α)
∫

Ω

µA�B dP + α

(
1−
∫

Ω

νA�B dP

)

Since

µA + µB = µA⊕B + µA�B

νA + νB = νA⊕B + νA�B

we obtain

P�(µA, νA) + P�(µB , νB) = P�(µA⊕B , νA⊕B) + P�(µA�B , νA�B).

Similarly

P�(µA, νA) + P�(µB , νB) = P�(µA⊕B , νA⊕B) + P�(µA�B , νA�B).

Therefore

P(µA, νA) + P(µB , νB) = P(µA⊕B , νA⊕B) + P(µA�B , νA�B)

We have proved that P is additive in the strong sense. ��
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Recently M. Krachounov introduced the notion of the probability on F by
the following way (here f ∨ g = max(f, g), f ∧ g = min(f, g)):

Definition 4.4. A mapping p : F → [0, 1] is an M -state if the following
properties are satisfied:

(i) p((0, 1)) = 0, p((1, 0)) = 1;
(ii) p((µA, νA))+p((µB , νB)) = p((µA∨µB , νA∧νB))+p((µA∧µB , νA∨νB)).
(iii) If (µAn

, νAn
) ↘ (µA, νA) then p((µAn

, νAn
)) ↘ p((µA, νA)).

Theorem 4.5. Any state is an M -state. There exists M -state that is not
a state.

Proof. Again by Theorem 4.2 there exists α ∈ [0, 1] and a probability P such
that

p((µA, νA)) = (1− α)
∫

Ω

µA dP + α

(
1−
∫

Ω

νA dP

)

p((µB , νB)) = (1− α)
∫

Ω

µB dP + α

(
1−
∫

Ω

νB dP

)

p((µA∨B , νA∨B)) = (1− α)
∫

Ω

µA∨B dP + α

(
1−
∫

Ω

νA∨B dP

)

p((µA∧BA, νA)) = (1− α)
∫

Ω

µA∧B dP + α

(
1−
∫

Ω

νA∧B dP

)

Since

µA + µB = µA∨B + µA∧B,

νA + νB = νA∨B + νA∧B,

we see that

p((µA, νA)) + p(µB , νB)) = p((µA∨B , νA∨B)) + p((µA∧B , νA∧B)).

Wa have seen that any state is an M -state. Now we shall present an
example of an M -state that is not a state. Fix x0 ∈ Ω and put

m(A) =
1
2
(µ2

A(x0) + 1− ν2
A(x0)).

Since

(µA ∨ µB)2 + (µA ∧ µB)2 = µ2
A + µ2

B ,

(νA ∨ νB)2 + (νA ∧ νB)2 = ν2
A + ν2

B ,

it is not difficult to see that m is an M -state. Put

µA(x) = µB(x) =
1
4
, νA(x) = νB(x) =

1
2
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for any x ∈ Ω. Then m(A) = m(B) = 13
32 . On the other hand

A⊕B =
((

1
2

)
Ω

, 0Ω

)
, A#B = (0Ω , 1Ω),

hence

m(A⊕B) + m(A#B) =
5
8

+ 0 �= 13
32

+
13
32

= m(A) + m(B).

��

5 Observables

As we have mentioned yet, the Kolmogorov probability theory has two impor-
tant notions: the first one is probability, the second one the notion of a random
variable. Since a random variable ξ is a measurable mapping ξ : Ω → R, to
any random variable a mapping x : B(R) → S can be defined by the formula
x(A) = ξ−1(A).

Such a homomorphism is called in quantum structures an observable. We
shall use the terminology also in our IF probability theory.

Definition 5.1. An IF-observable is a mapping x : B(R) → F satisfying the
following conditions:

(i) x(R) = (1Ω , 0Ω), x(∅) = (0Ω , 1Ω)
(ii) A ∩B = ∅ =⇒ x(A)# x(B) = (0Ω , 1Ω), x(A ∪B) = x(A)⊕ x(B);
(iii) An ↗ A =⇒ x(An) ↗ x(A).

Since F ⊂M, any observable x : B(R) → F is an observable in the sense
of the MV-algebra probability theory [19, 20].

Proposition 5.2. If P = (P�,P�) : F → J is an IF-probability, and x is an
IF-observable, then the mappings P� ◦ x,P� ◦ x : B(R) → [0, 1] are probability
measures.

Proof. We prove only additivity. If A ∩B = ∅, then x(A)# x(B) = (0Ω , 1Ω),
hence

P�(x(A∪B)) = P�(x(A)⊕x(B))+P�(x(A)#x(B)) = P�(x(A))+P�(x(B)).

��

Definition 5.3. The product A.B of two IF-events A,B is defined by the
equality

A.B = (µAµB , 1− (1− νA)(1− νB)).

Definition 5.4. If x, y are IF-observables, then their joint IF-observable is
a mapping h : B(R2) → F satisfying the following conditions:
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(i) h(R2) = (1Ω , 0Ω), h(∅) = (0Ω , 1Ω)
(ii) A ∩ B = ∅ =⇒ h(A) ∧ h(B) = (0Ω , 1Ω), h(A ∪ B) = h(A) + h(B),

A,B ∈ B(R2)
(iii) An ↗ A =⇒ h(An ↗ h(A))
(iv) h(C ×D) = x(C).y(D), C,D ∈ B(R)

A motivation for the notion of joint observable is the random vector T =
(ξ, η) : Ω → R2. Any random vector T : Ω → R2 induces a homomorphism
h : A (→ T−1(A), B(R2) → S such that T−1(C ×D) = ξ−1(C) ∩ η−1(D).

Theorem 5.5. For any IF-observables x, y : B(R) → F there exists their
joint IF-observable.

Proof. Put x(A) = (x�(A), 1−x�(A)), y(B) = (y�(B), 1− y�(B)). We want to
construct h(C) = (h�(C), 1− h�(C)). Fix ω ∈ Ω and put

µ(A) = x�(A)(ω), ν(B) = y�(B)(ω).

It is not difficult to prove that µ, ν : B(R) → [0, 1] are probability measures.
Let

µ× ν : B(R2) → [0, 1]

be the product of measures and define

h�(A)(ω) = µ× ν(A).

Then h� : B(R2) → T , where T is the family of all S-measurable functions
from Ω to [0,1]. If C,D ∈ B(R), then

h�(C ×D)(ω) = µ× ν(C ×D) = µ(C).µ(D) = x�(C)(ω).y�(D)(ω),

hence
h�(C ×D) = x�(C).y�(D).

Similarly h� : B(R2) → T can be constructed such that

h�(C ×D) = x�(C).y�(D).

Put
h(A) = (h�(A), 1− h�(A)), A ∈ B(R2).

By Definition 5.4 we have for C,D ∈ B(R)

x(C).y(D) = (x�(C), 1− x�(C)).(y�(D), 1− y�(D))

= (x�(C).y�(D), 1− (1− (1− x�(C))).(1− (1− y�(D))))

= (x�(C).y�(D), 1− x�(C).y�(D))

= (h�(C ×D), 1− h�(C ×D)) = h(C ×D).

��
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Definition 5.6. For any probability P = [P�,P�] : F → J and any IF-
observable x : B(R) → F we define

E�(x) =
∫

R

tdP�
x(t), E�(x) =

∫
R

tdP�
x(t),

σ2
� =

∫
R

(t− E�(x))2dP�
x(t), σ2

� (x) =
∫

R

(t− E�(x))2dP�
x(t)

assuming that these integrals exist.

Definition 5.7. Let gn : Rn → R be a Borel function, x1, . . . , xn : B(R) → F
be IF-observables, hn : B(Rn) → F their joint IF-observable. Then we define
the IF-observable yn = gn(x1, . . . , xn) : B(R) → F by the prescription

yn(A) = hn(g−1
n (A)).

Again here a motivation is a function of random variables. Let T = (ξ, η)
be a random vector. Then ζ = g(ξ, η) = g ◦T , hence ζ−1(A) = (g ◦T )−1(A) =
T−1(g−1(A)) = h◦g−1(A), where h = T−1 : B(R2) → S is the joint observable
corresponding to the random vector T .

Definition 5.8. A sequence (xn) of IF-observables is independent if for any n

P�(hn(A1 × · · · ×An)) = P�
x1

(A1). . . . .P�
xn

(An),

P�(hn(A1 × · · · ×An)) = P�
x1

(A1). . . . .P�
xn

(An),

where hn : B(Rn) → F is the joint observable of x1, . . . , xn.

6 Central Limit Theorem

Theorem 6.1. Let (xn) be a sequence of independent equally distributed,
square integrable IF-observables,

E�(xn) = E�(xn) = a, σ2
� (xn) = σ2

� (xn) = σ2 (n = 1, 2, . . . )

Then for any t ∈ R there holds

lim
n→∞P�

(x1 + · · ·+ xn − na

σ
√

n
((−∞, t))

)
=

1√
2π

∫ t

−∞
e−

u2
2 du

lim
n→∞P�

(x1 + · · ·+ xn − na

σ
√

n
((−∞, t))

)
=

1√
2π

∫ t

−∞
e−

u2
2 du

Proof. We have seen that F ⊂M where M is an MV-algebra and there exists
states P�

, P�
: M→ [0, 1] such that P�|F = P�, P�|F = P�.

Moreover, xn are IF-observables, xn : B(R) → F ⊂M, hence also observ-
ables in the sense of MV-algebra probability theory.
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Therefore by Theorem 2.12 of [19] (see also Theorem 9.2.6. in [20]) and
Theorem 5.5 we have

lim
n→∞P�

(x1 + · · ·+ xn − na

σ
√

n
((−∞, t))

)
=

1√
2π

∫ t

−∞
e−

u2
2 du

and the analogous assertion holds for the mapping P�
. ��

7 Weak Law of Large Numbers

Theorem 7.1. Let (xn) be a sequence of independent equally distributed IF-
observables, (i.e. P� ◦ x1 = P� ◦ xn, P� ◦ x1 = P�xn for any n), E�(xn) =
E�(xn) = a, (n = 1, 2, . . . ) Then for any ε > 0 there holds

lim
n→∞P�

((x1 + · · ·+ xn

n
− a
)
((−ε, ε))

)
= 1

lim
n→∞P�

((x1 + · · ·+ xn

n
− a
)
((−ε, ε))

)
= 1

Proof. We have seen that F ⊂M where M is an MV-algebra and there exists
states P�

,P�
: M→ [0, 1] such that P�|F = P�, P�|F = P�.

Moreover, xn are IF-observables, xn : B(R) → F ⊂ M, hence also
observables in the sense of MV-algebra probability theory. Therefore by
Theorem 2.15 of [19] and Theorem 5.5 we have

lim
n→∞P�

((x1 + · · ·+ xn

n
− a
)
((−ε, ε))

)
= 1

and the analogous assertion holds for the mapping P�
. ��

8 Strong Law of Large Numbers

The strong law of large numbers is concerned with the P-almost everywhere
convergence. If (ηn) is a sequence of random variable on a probability space
Ω,S, P ), then (ηn) converges to 0 P -almost everywhere, if

lim
p→∞ lim

k→∞
lim

i→∞
P
(k+i⋂

n=k

η−1
n

((−1
p , 1

p

)))
= P

( ∞⋂
p=1

∞⋃
k=1

∞⋂
n=k

η−1
n

((−1
p , 1

p

)))
= 1.

This fact leads to the following definition:

Definition 8.1. A sequence yn of observables converges m-almost everywhere
to 0 if and only if

lim
p→∞ lim

k→∞
lim

i→∞
P
(k+i⋂

n=k

y−1
n

((−1
p , 1

p

)))
= P

( ∞⋂
p=1

∞⋃
k=1

∞⋂
n=k

y−1
n

((−1
p , 1

p

)))
= 1.



www.manaraa.com

410 B. Riečan

Theorem 8.2. Let (xn) be a sequence of independent, square integrable IF-
observables, such that

∑∞
n=1 σ2(xn)/n2 < ∞. Then the sequence(x1 − E(x1) + · · ·+ xn − E(xn)

n

)∞
n=1

converges to 0 P�-almost everywhere as well as P�-almost everywhere.

Proof. We have seen that F ⊂M where M is an MV-algebra and there exists
states P�

,P�
: M→ [0, 1] such that P�|F = P�, P�|F = P�.

Moreover, xn are IF-observables, xn : B(R) → F ⊂M, hence also observ-
ables in the sense of MV-algebra probability theory.

Therefore by Theorem 2.16 of [19] (see also Theorem 9.3.4 in [20]) and
Theorem 5.5 the sequence(x1 − E(x1) + · · ·+ xn − E(xn)

n

)∞
n=1

converges to 0 P�-almost everywhere as well as P�-almost everywhere. ��

9 Conditional Probability

In the Kolmogorov theory, given a probability space (Ω,S, P ), by the con-
ditional expectation of two random variables ξ and η we understand a Borel
function E(ξ|η) : R → R such that, for all B ∈ B(R),∫

B

E(ξ|η) dPη =
∫

η−1(B)

ξ dP.

This construction has been adapted for MV-algebras with product. This
notion has been introduced independently by F. Montagna [9] and the author
[11]. One of possible definitions is the following.

Definition 9.1. A product in an MV-algebra M is an associative and
commutative binary operation ∗ satisfying the following conditions, for all
a, b, c, an, bn ∈ M :

(i) 1 ∗ a = a.
(ii) If a# b = 0, then (c ∗ a)# (c ∗ b) = 0 and c ∗ (a⊕ b) = (c ∗ a)⊕ (c ∗ b).
(iii) If an ↘ 0 and bn ↘ 0, then an ∗ bn ↘ 0.

An MV-algebra with product is a pair (M, ∗), where M is an MV-algebra, and
∗ is a product.

Theorem 9.2. Define on the family M the binary operation ∗ by the formula

A ∗B = (µA, νA) ∗ (µB , νB) = (µAµB , 1− (1− νA)(1− νB))
= (µAµB , νA + νB − νAνB).

Then ∗ is a product on M.
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Proof. First we prove (i). Indeed, (1, 0) ∗ (µA, νA) = (1.µA, 0 + νA − 0.νA) =
(µA, νA).

Let now A#B = (µA, νA)#(µB , νB) = (0, 1). It means that 0 = µA#µB =
(µA + µB − 1) ∨ 0, hence µA + µB ≤ 1, and µA ⊕ µB = µA + µB .

On the other hand 1 = νA ⊕ νB = (νA + νB) ∧ 1, hence νA + νB ≥ 1, and
νA # νB = νA + νB − 1. Now

(C ∗ A) � (C ∗ B) = ((µC , νC) ∗ (µA, νA)) � ((µC , νC) ∗ (µB , νB))

= (µAµC , νA + νC − νAνC) � (µBµC , νB + νC − νBνC)

= (µAµC � µCµB , (νC + νA − νAνC) ⊕ (νC + νB − νCνB)).

Of course, (µAµC + µBµC − 1) ∨ 0 ≤ (µA + µB − 1) ∨ 0 = 0, hence
µAµC # µCµB = 0. On the other hand

(νC + νA − νCνA)⊕ (νC + νB − νCνB)
= (νC + νA − νAνC + νC + νB − νB − νCνB) ∧ 1
≥ (1 + νC(1− νA) + νC(1− νB)) ∧ 1 ≥ 1 ∧ 1 = 1.

Therefore (C ∗A)# (C ∗B) = (0, 1). Count now

C ∗ (A⊕B) = (µC , νC) ∗ ((µA, νA)⊕ (µB , νB))
= (µC , νC)(µA ⊕ µB , νA # νB)
= (µC(µA ⊕ µB), νC + νA # νB − νC(νA # νB))
= (µCµA + µCµB , νC + νA + νB − 1− νCνA − νCνB + νC).

On the other hand

(C ∗ A) ⊕ (C ∗ B) = ((µC , νC) ∗ (µA, νA)) ⊕ ((µC , νC) ∗ (µB , νB))

= (µCµA, νC + νA − νCνA) ⊕ (µCµB , νC + νB − νCνB)

= (µCµA + µCµB , νC + νA − νCνA + νC + νB − νCνB − 1).

We see that C ∗ (A⊕B) = (A ∗ C)⊕ (A ∗ C).
Finally let

An = (µAn
, νAn

) ↘ (0, 1), Bn = (µBn
, µBn

) ↘ (0, 1)

hence µAn
↘ 0, µBn

↘ 0, νAn
↗ 1, νBn

↗ 1. First µAn∗Bn
= µAn

µBn
↘ 0.

On the other hand 1− νAn
↘ 0, 1− νBn

↘ 0. Therefore

νAn∗Bn
= νAn

+ νBn
− νAnνBn

= 1− (1− νAn
)(1− νBn

) ↗ 1.

Therefore

An ∗Bn = (µAn
µBn

, νAn
+ νBn

− νAn
νBn

) ↘ (0, 1).

We have proved that M is an MV-algebra with product. ��

Again we see that the results of the probability theory on MV-algebras
may be used. The details published in Lendelová see [7].
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10 Conclusion

In the chapter some results are presented concerning the probability on IF-
events. Probably more important is the method how to obtain these results
and their proofs; an embedding the family of all IF-events to an appropriate
MV-algebra. This fact is important at least from two points of view.

First, MV-algebra is a very important algebraic model for many valued
logic [2, 9]. It plays the same role as Boolean algebra in two-valued logic.
Moreover, MV-algebras present a very simple model, because of the Mundici
theorem: they can be represent by lattice ordered groups.

Secondly, there exists well developed probability theory on MV-algebras
[19, 20]. It is based on a local representation of any sequence [18] of observables
by a sequence of random variables in a suitable Kolmogorov probability space.
Of course, the construction is quite abstract, and from the point of view of
applications it is more effective to use directly the results as to study the
construction.

Of course, the communication channel between MV-algebras and IF-events
should continue in both directions. there are some results of MV-algebra mea-
sure theory still not used in the IF-events theory, e.g. some important in-
vestigations concerning ergodicity and entropy of dynamical systems; some
experiences are contained in [14, 15].

On the other hand some problems of the probability on IF-events could be
possibly solved by simpler methods in the more concrete situation. Namely in
the IF-probability theory a general form is known [16, 8], Theorem 4.2).

Although the method presented in the chapter is very effective, it is not
unique possible (see e.g. [6, 7] has not been published). Moreover there is
another concept [5] using the Zadeh connectives instead of the Lukasiewicz
ones. We have mentioned it in Theorem 4.2, in a more complete form it will
published in [17].

At the end let us mention that the probability theory on IF-events cannot
be reduced to the probability theory on fuzzy sets. It follows from the general
form of the probability on IF-events (Theorem 4.2).
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Summary. We show and justify how to calculate distances for intuitionistic fuzzy
sets (A-IFSs, for short)1. We show a proper way of calculations not only from a
mathematical point of view but also of an intuitive appeal making use of all the
relevant information.

1 Introduction

The concept of a distance in the context of fuzzy sets [26], or some gener-
alization – intuitionistic fuzzy sets, or A-IFSs for short [1, 3] is of utmost
importance, for theory and applications, notably in similarity related issues
in pattern recognition, classificatons, group decisions, soft consensus meas-
ures, etc.

There are well-known formulas for measuring distances between fuzzy sets
using, e.g. the Minkowski r-metrics (e.g. the Hamming distances for r = 1,
the Euclidean distances for r = 2, the dominance metric for r = ∞), or the
Hausdorff metric.

The situation is quite different for A-IFSs for which there are two ways of
measuring distances. Some researchers use two parameters only (the member-
ships and non-memberships) in the formulas whereas the others Szmidt and
Kacprzyk [13], Deng-Feng [5], Tan and Zhang [24], Narukawa and Torra [6])
use all three parameters (the membership, non-membership and hesitation
margin) characterizing A-IFSs. Both methods are correct in the Minkowski
r-metrics as all necessary and sufficient conditions are fulfilled for distances in
spite of the formulas used (with two or with three parameters). The situation

1 There is currently a discussion on the appropriateness of the name intuitionistic
fuzzy set (cf. Dubois, Gottwald, Hajek, Kacprzyk and Prade (Fuzzy Sets Syst.
156:485–491, 2005)) introduced by Atanassov. However, this is beyond the scope
of this chapter which is just concerned with an application of the concept.

E. Szmidt and J. Kacprzyk: Dilemmas with Distances Between Intuitionistic Fuzzy Sets:

Straightforward Approaches May Not Work, Studies in Computational Intelligence (SCI) 109,

415–430 (2008)
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is quite different (to the disadvantage of two-parameter formulas) in the
Hausdorff metric but it will be discussed in details later (Sect. 5.2).

One could say that if both methods follow (in the Minkowski r-metrics)
all mathematical assumptions, the problem does not exist – both methods
are correct and can be used interchangeably. Unfortunately, the fact which
method we use does influence the final results – the results of calculations
differ not only in the values (what is obvious) but also give quite different,
qualitively!, answers (Sect. 5.3).

The advocates of the method with two parameters (memberships and non-
memberships) claim that it is useless to take into account the third parameter
(hesitation margin) which value is always known as the result of the two
used parameters. However, the fact that we know the values does not mean
that we can discard them from the formulas on distances provided it gives
more information and/or insight. It is particularly clear for the Hausdorff
metric (two-parameter formulas do not work – Sect. 5.2). For the Minkowski
r-metrics, from a mathematical point of view, we can calculate distances us-
ing two parameters only but we lose a lot of important information. While
calculating distances for A-IFSs we should not only observe the mathematical
correctness but should look for formulas that use all possible information im-
portant from the point of view of a particular application in mind. Therefore,
one can argue that by neglecting the hesitation margins we make no use of
an important part of the knowledge available. The hesitation margins inform
us, generally speaking, about an amount of lacking information (Sect. 2). Ob-
viously if we know a lot, a little or maybe nothing is relevant, and when this
not used, we can draw improper conclusions (Sect. 5.2).

It seems that the advocates of two-parameter methods just generalize the
following reasoning known for fuzzy sets:

1. For fuzzy sets one parameter (the memberships) is enough
2. The sum of membership and non-membership is “automatically” equal to

one
3. The non-memberships as a direct result of memberships are redundant

So, for the A-IFSs the similar reasoning seems to be automatically adopted:

1. We know that the sum of membership, non-membership and hesitation
margin is equal to one.

2. The hesitation margins are a direct result of the memberships and non-
memberships.

3. Hesitation margins are redundant in the formulas.

Although the reasoning in the same, we show that there are differences when
we omit the non-memberships for fuzzy sets (Sect. 3), and the hesitation mar-
gins for A-IFSs (Sect. 4). Both analytical and geometric considerations justify
this claims.

The material in the chapter is organized as follows. In Sect. 2 we briefly
remind the concept of A-IFSs and discuss their geometrical representations
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(Sect. 2.1). In Sect. 3 we remind the distances for fuzzy sets showing why non-
memberships play no role in the formulas. In Sect. 4 we discuss the Hamming
and the Euclidean distances between A-IFSs using three-parameter formulas.
We gives arguments (both analytical and geometrical) why the third para-
meters should not be excluded from the formulas. In Sect. 5 we show the
decisive drawbacks and errors when one insists on calculating distances using
two-parameter formulas. First, two-parameter formulas contradict the obvious
facts from intuitionistic fuzzy set theory (Sect. 5.1). Second, calculating the
Hausdorff distance with two-parameter formulas is incorrect in the sense of
breaking mathematical rules – we show it in Sect. 5.2, and propose the proper
way of calculations (using all three parameters, of course). Third, discarding
hesitation margins from the formulas leads to quality differences in conclu-
sions – it is discussed in Sect. 5.3. In Sect. 6 we finish with some conclusions.

2 Intuitionistic Fuzzy Sets

One of the possible generalizations of a fuzzy set in X [26], given by

A
′
= {<x, µA′ (x)>|x ∈ X} (1)

where µA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an

Atanassov’s intuitionistic fuzzy set [1–3] A given by

A = {<x, µA(x), νA(x)>|x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of
non-membership of x ∈ A, respectively.

Obviously, each fuzzy set may be represented by the following A-IFS

A = {<x, µA′ (x), 1− µA′ (x)>|x ∈ X} (4)

For each A-IFS in X, we will call

πA(x) = 1− µA(x)− νA(x) (5)

an intuitionistic fuzzy index (or a hesitation margin) of x ∈ A which expresses
a lack of knowledge of whether x belongs to A or not (cf. [3]). 0 ≤ πA(x) ≤ 1
for each x ∈ X.

The use of A-IFSs means the introduction of another degree of freedom
that gives us an additional possibility to represent imperfect knowledge and
more adequately describe many real problems.Applications of A-IFSs to group
decision making, negotiations and other situations are presented in Szmidt and
Kacprzyk [9–12,14–21].
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2.1 A Geometrical Representation

Having in mind that for each element x belonging to an A-IFS A, the values
of membership, non-membership and the intuitionistic fuzzy index add up
to one:

µA(x) + νA(x) + πA(x) = 1

and that each: membership, non-membership, and the intuitionistic fuzzy in-
dex are from the interval [0, 1], we can imagine a unit cube (Fig. 1) inside
which there is an ABD triangle where the above equation is fulfilled. In other
words, the ABD triangle represents a surface where coordinates of any ele-
ment belonging to an A-IFS can be represented. Each point belonging to the
ABD triangle is described via three coordinates: (µ, ν, π). Points A and B
represent crisp elements. Point A(1, 0, 0) represents elements fully belonging
to an A-IFS as µ = 1. Point B(0, 1, 0) represents elements fully not belonging
to an A-IFS as ν = 1. Point D(0, 0, 1) represents elements about which we are
not able to say if they belong or not belong to an A-IFS (intuitionistic fuzzy
index π = 1). Such an interpretation is intuitively appealing and provides
means for the representation of many aspects of imperfect information. Seg-
ment AB (where π = 0) represents elements belonging to a classical fuzzy set
(µ + ν = 1). Any other combination of values characterizing an A-IFS can be
represented inside the triangle ABD. In other words, each element belonging
to an A-IFS can be represented as a point (µ, ν, π) belonging to the triangle
ABD (Fig. 1).

D 0,0,1 

C 0,0,0 A 1,0,0 

B 0,1,0 

x'

x
X

Fig. 1. Geometrical representation
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It is worth mentioning that the geometrical interpretation is directly re-
lated to the definition of an A-IFS introduced by Atanassov [1,3]. By employ-
ing the above geometrical representation, we can calculate distances between
any two A-IFSs A and B containing n elements. To start discussing distances
for A-IFSs, we first recall distances for fuzzy sets as in some papers the for-
mulas which are correct for fuzzy sets are automatically(!) transformed for
A-IFSs leading: at least – to using only a part of information we have, at
worst – to incorrect results. We will discuss the problem in details in Sect. 4.

3 Distances for Fuzzy Sets

Let us briefly recall some basic concepts concerning distances for fuzzy sets.
The most widely used distances for fuzzy sets A

′
, B

′
in X = {x1,x2, . . . , xn} are:

– The Hamming distance d
′
(A

′
, B

′
)

d
′
(A

′
, B) =

n∑
i=1

|µA′ (xi)− µB′ (xi)| (6)

– The normalized Hamming distance l
′
(A

′
, B

′
):

l
′
(A

′
, B

′
) =

1
n

n∑
i=1

|µA′ (xi)− µB′ (xi)| (7)

– The Euclidean distance e
′
(A

′
, B

′
):

e
′
(A

′
, B

′
) =

{
n∑

i=1

(µA′ (xi)− µB′ (xi))
2

}0.5

(8)

– The normalized Euclidean distance q
′
(A

′
, B

′
):

q
′
(A

′
, B

′
) =

{
1
n

n∑
i=1

(µA′ (xi)− µB′ (xi))
2

}0.5

(9)

In all the above formulas (6)–(9), the membership functions are only present
which is because for a fuzzy set µ(xi) + ν(xi) = 1.

As we can represent a fuzzy set A′ in X in an equivalent intuitionistic-type
representation (4), we will employ such a representation while rewriting the
distances (6)–(9).
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So, first, taking into account an intuitionistic-type representation of a fuzzy
set, we can express the very essence of the Hamming distance by putting

d
′
(A

′
, B

′
) =

n∑
i=1

(|µA′ (xi)− µB′ (xi)|+ |νA′ (xi)− νB′ (xi)|)

=
n∑

i=1

(|µA′ (xi)− µB′ (xi)|+ |1− µA′ (xi)− 1 + µB′ (xi)|)

= 2
n∑

i=1

|µA′ (xi)− µB′ (xi)| = 2d
′
(A

′
, B

′
) (10)

i.e. it is twice as large as the Hamming distance of a fuzzy set (6).
And similarly, the normalized Hamming distance l

′
(A

′
, B

′
) taking into

account an intuitionistic-type representation of a fuzzy set is in turn equal to

l
′
(A

′
, B

′
) =

1
n
· d′

(A
′
, B

′
) =

2
n

n∑
i=1

|µA′ (xi)− µB′ (xi)| (11)

i.e. the result of (11) is two times multiplied as compared to (7).
Then, by the same line of reasoning, the Euclidean distance, taking into

account an intuitionistic-type representation of a fuzzy set, is

e
′
(A

′
, B

′
) =

(
n∑

i=1

(µA′ (xi)− µB′ (xi))2 + (νA′ (xi)− νB′ (xi))2
) 1

2

=

(
n∑

i=1

(µA′ (xi)− µB′ (xi))2 + (1− µA′ (xi)− 1 + µB′ (xi))2
) 1

2

=

(
2

n∑
i=1

(µA′ (xi)− µB′ (xi))2
) 1

2

(12)

i.e. it is only multiplied by
√

2 as compared to the Euclidean distance for
the usual representation of fuzzy sets given by (8). Multiplication by a con-
stant value does not bring any additional information connected to non-
memberships.

The normalized Euclidean distance q
′
(A

′
, B

′
) taking into account an

intuitionistic-type representation of a fuzzy set is then

q
′
(A

′
, B

′
) =

√
1
n
· e′

(A
′
, B

′
) =

√√√√ 2
n

n∑
i=1

(µA′ (xi)− µB′ (xi))
2 (13)

and again the result of (13) is multiplied by
√

2 as compared to (9).
The above results confirm the very well-known fact that for fuzzy sets tak-

ing into account the memberships only is enough while calculating distances.
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An additional use of the non-membership into the formulas is redundant as
the results obtained are only multiplied by a constant.

One could extend the conclusions (and unfortunately, it is done not so
rarely) to A-IFSs – asserting that as for A-IFSs we have µA(x) + νA(x) +
πA(x) = 1, it means that just two of the three parameters are quite enough
to calculate distances because when knowing two parameters we immediately
know the third as well. Of course, we do know the third parameter but it need
not imply that it should be neglected in the formulas for calculating distances
for A-IFSs We will show a justification in Sect. 4.

4 Distances Between A-IFSs

Distances between A-IFSs are calculated in the literature in two ways, using
two parameters only or all three parameters describing elements belonging to
the sets. Both ways are proper from the point of view of pure mathematical
conditions concerning distances (all properties are fulfilled in both cases).
Unfortunately one cannot say that both ways are equal when assessing the
results obtained by the two approaches. Now we will present arguments why
in our opinion all three parameters should be used in the respective formulas,
and what additional qualities their inclusion can give.

In Szmidt and Kacprzyk [13], Szmidt and Baldwin [7, 8], it is shown why
in the calculation of distances between A-IFSs one should use all three para-
meters describing A-IFSs The considerations in [7, 8, 13] are illustrated via a
geometrical representation of A-IFSs (Sect. 2.1).

Employing the above geometrical representation, we can calculate dis-
tances between any two A-IFSs A and B in X = {x1,x2, . . . , xn} [7,8,13], e.g.

– The normalized Hamming distance:

lIFS(A,B) =
1
2n

n∑
i=1

(|µA(xi)− µB(xi)|

+ |νA(xi)− νB(xi)|+ |πA(xi)− πB(xi)|) (14)

– The normalized Euclidean distance:

eIFS(A,B) =
(

1
2n

n∑
i=1

(µA(xi)− µB(xi))2

+(νA(xi)− νB(xi))2 + (πA(xi)− πB(xi))2
) 1

2

(15)

Both distances are from the interval [0, 1].
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It is easy to notice why all three parameters should be used when calcu-
lating distances. As the geometrical representation shows (Fig. 1), each side
of the considered triangle is of the same length, i.e. AB = BD = AD. But
while using two parameters only, i.e.

l2(A,B) =
1
2n

n∑
i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|) (16)

we obtain

l2(A,B) = 0.5(|1− 0|+ |0− 1|) = 1 (17)

l2(A,D) = 0.5(|1− 0|+ |0− 0|) = 0.5 (18)

l2(B,D) = 0.5(|0− 0|+ |1− 0|) = 0.5 (19)

so that
l2(A,B) �= l2(A,D) and l2(A,B) �= l2(B,D) (20)

i.e. the use of formula (16) means the use of two different scales: one for
measuring distances for fuzzy sets (segment AB), and the other one for “pure”
A-IFSs (for which the hesitation margin is greater than zero – the whole area
of the triangle ABD over the segment AB). Only while using (14) with all
the three parameters we obtain

lIFS(A,B) = 0.5(|1− 0|+ |0− 1|+ |0− 0|) = 1 (21)

lIFS(A,D) = 0.5(|1− 0|+ |0− 0|+ |0− 1|) = 1 (22)

lIFS(B,D) = 0.5(|0− 0|+ |1− 0|+ |0− 1|) = 1 (23)

which means that the condition lIFS(A,D) = lIFS(A,B) = lIFS(B,D) is
fulfilled, i.e. the distances for fuzzy sets and A-IFSs are measured using the
same scale.

In other words, when taking into account two parameters only, for elements
from the classical fuzzy sets (which are a special case of A-IFSs – segment
AB in Fig. 1) we obtain distances from a different interval than for elements
belonging to A-IFSs. This may be a serious deficiency in practice as for the
fuzzy and intuitionistic fuzzy sets two different measurement scales are used.

The same conclusions – that all three parameters should be taken into
account in the formulas for distances can be drawn in an analytical way as well.

Let us verify if we can discard the values π from the formula (14). Taking
into account (5) we have

|πA(xi)− πB(xi)| = |1− µA(xi)− νA(xi)− 1 + µB(xi) + νB(xi)|
≤ |µB(xi)− µA(xi)|+ |νB(xi)− νA(xi)| (24)

Inequality (24) means that the third parameter in (14) should not be
omitted as it was in the case of fuzzy sets for which taking into account the
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second parameter would only result in the multiplication by a constant value.
For A-IFSs omitting the third parameter has an influence on the results.

A similar situation occurs for the Euclidean distance. Let us verify the
effect of omitting the third parameter (π) in (15). Taking into account (5),
we have

(πA(xi)− πB(xi))2 = (1− µA(xi)− νA(xi)− 1 + µB(xi) + νB(xi))2

= (µA(xi)− µB(xi))2 + (νA(xi)− νB(xi))2

+ 2(µA(xi)− µB(xi))(νA(xi)− νB(xi)) (25)

what means that taking into account the third parameter π while calculating
the Euclidean distance for the A-IFSs does have an influence on the final re-
sult. It was also obvious because a two-dimensional geometrical representation
(being a foundation for using two parameters only) is an orthogonal projection
of the three-dimension geometrical representation. For a deeper discussion of
the problem of connections between geometrical representations of A-IFSs we
refer an interested reader to Szmidt and Kacprzyk [13], Tasseva et al. [25],
Atanassov et al. [4].

So far we have presented both analytical and geometrical arguments why
the formulas with all three parameters should be used when calculating dis-
tances for the A-IFSs. Now we will show some negative effects of using two
parameters only.

5 Some Negative Effects of Using Two Parameters

5.1 Distances Built on “Personal Opinions”

Some researchers claim that the calculation of distances for the A-IFSs using
two parameters only – like in (16), and the obtained results (17)–(19) are
proper. In their opinion the distance of the element representing full lack of
knowledge (0, 0, 1) from a crisp element, e.g. (1, 0, 0) should be less than the
distance between two crisp elements what is guaranteed by two parameter
representation.

Albeit it is rather difficult to fully stick to the construction of general
models on personal opinions, we agree for a (short) moment for such an ex-
planation. But we immediately see a contradiction. On the one hand, (0, 0, 1),
due to the theory of A-IFSs, represents any (!) element as (0, 0, 1) means that
we have no knowledge about this element whatsoever, so that it could be a
crisp element, any fuzzy element (µ, ν, 0) (where: µ + ν = 1), or any intu-
itionistic fuzzy element (µ, ν, π) (where: µ + ν + π = 1). Let assume that in
particular it could be a crisp element. But it can not be a crisp element (for
the case of two parameters only) as the distance between (0, 0, 1) and a crisp
element is less than the distance between two crisp elements (for the Hamming
distance it is equal to 1/2). This fact seems to best subsume this procedure.
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Of course, we can agree that – from a theoretical point of view – one could
apply ANY formula to calculate distances (due to some mathematical rules)
and rendering ANY personal convictions concerning the ratio of the distances:
between the crisp elements (1, 0, 0) and (0, 1, 0) on the one hand, and between
(0, 0, 1) and a crisp element on the other hand. However, it should be stressed
that a particular solution adopted in a particular work may be proper in a
particular specific case but not generally.

5.2 The Hausdorff Distances

The calculation of distances using two parameters only leads to completely
wrong results when a Hausdorff distance is introduced on the basis of such
formulas. We will show it following the results presented by Grzegorzewski in
his paper: “Distances between intuitionistic fuzzy sets and/or interval-valued
fuzzy sets based on Hausdorff metric” in Fuzzy Sets and Systems, 148 (2004)
319–328.

Grzegorzewski claims in Abstract: “The proposed new distances are
straightforward generalizations of the well known Hamming distance, the
Euclidean distance and their normalized counterparts”, (p. 324): “Our de-
finitions are natural counterparts of the Hamming distance, the Euclidean
distance and their normalized versions”, and in Conclusions (p. 327) it is
repeated again. He has in mind the Hamming and the Euclidean distances
taking into account two parameters only, and the following:
the “Hausdorff” distance

H2(A,B) =
1
2n

n∑
i=1

max{|µA(xi)− µB(xi)| , |νA(xi)− νB(xi)|} (26)

which in fact is not a Hausdorff distance.
It is important to assess properly the results obtained when using (26). The

best explanations are given by Grzegorzewski in Example 2 (the paper cited,
p. 324) where the Hausdorff distances for separate elements are calculated.
As we know, for separate elements the Hausdorff distances reduce just to
“normal” distances, i.e. Hamming or Euclidean, etc. So let us look at the
results in Example 2 and let us compare them to the results obtained from
(16), i.e. the Hamming distance (using two parameters only) which – according
to Grzegorzewski – are proper.

In Example 2 the following A-IFSs: A, B, D, G, E ∈ X = {x} are consi-
dered

A = {<x, 1, 0>}, B = {<x, 0, 1>}, D = {<x, 0, 0>},

G = {<x,
1
2
,
1
2
>}, E = {<x,

1
4
,
1
4
>} (27)

It is easy to notice that in each of the above sets only one element is present.
So in fact while calculating distances between the above sets, we calculate
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distances between (two) elements. Now we will verify if the proposed formula
(26) and its counterpart, the Hamming distance (16), give the same results as
it should be the case (by the well-known definition of the Hausdorff distance)
for distances between separate elements.

Here are the results obtained from (26):

H2(A,B) = max{|1− 0|, |0− 1|} = 1
H2(A,D) = max{|1− 0|, |0− 0|} = 1
H2(B,D) = max{|0− 0|, |1− 0|} = 1
H2(A,G) = max{|1− 1/2|, |0− 1/2|} = 0.5
H2(A,E) = max{|1− 1/4|, |0− 1/4|} = 0.75
H2(B,G) = max{|0− 1/2|, |1− 1/2|} = 0.5
H2(B,E) = max{|0− 1/4|, |1− 1/4|} = 0.75
H2(D,G) = max{|0− 1/2|, |0− 1/2|} = 0.5
H2(D,E) = max{|0− 1/4|, |1− 1/4|} = 0.25
H2(G,E) = max{|1/2− 1/4|, |1/2− 1/4|} = 0.25

Their counterpart Hamming distances calculated from (16) (without the
hesitation margins) are:

l2(A,B) = 0.5(|1− 0|+ |0− 1|) = 1
l2(A,D) = 0.5(|1− 0|+ |0− 0||) = 0.5
l2(B,D) = 0.5(|0− 0|+ |1− 0||) = 0.5
l2(A,G) = 0.5(|0− 1/2|+ |0− 1/2|) = 0.5
l2(A,E) = 0.5(|1− 1/4|+ |0− 1/4||) = 0.5
l2(B,G) = 0.5(|1− 1/4|+ |0− 1/4|) = 0.5
l2(B,E) = 0.5(|1− 1/4|+ |0− 1/4|) = 0.5
l2(D,G) = 0.5(|0− 1/2|+ |0− 1/2|) = 0.5
l2(D,E) = 0.5(|0− 1/4|+ |0− 1/4|) = 0.25
l2(G,E) = 0.5(|1/2− 1/4|+ |1/2− 1/4|) = 0.25

i.e. the values of the Hamming distances obtained from (16) and used for the
derivation of the Hausdorff distances (26) are not consistent. The differences:

H2(A,D) �= l2(A,D)
H2(B,D) �= l2(B,D)
H2(A,E) �= l2(A,E)
H2(B,E) �= l2(B,E)

Conclusion: the way of calculating the Hausdorff distance for the A-IFSs
while using two parameters only leads to wrong results – the mathematical
assumptions for the Hausdorff distance are broken.
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Now let us calculate the Hausdorff distance in a proper way, i.e. using the
formula proposed here:

H3(A,B) =
1
2n

n∑
i=1

max{(|µA(xi)− µB(xi)| ,

|νA(xi)− νB(xi)| , |πA(xi)− πB(xi)|)} (28)

We use (28) for data from the Example 2. But now, as we also take into
account the hesitation margins, instead of (27) we use the “full description”
of the data:

A = {<x, 1, 0, 0>}, B = {<x, 0, 1, 0>},

D = {<x, 0, 0, 1 >}, G = {< x,
1
2
,
1
2
, 0>},

E = {<x,
1
4
,
1
4
,
1
2
>}, (29)

and obtain:

H3(A,B) = max(|1− 0|, |0− 1|, |0− 0|) = 1
H3(A,D) = max(|1− 0|, |0− 0|, |0− 1|) = 1
H3(B,D) = max(|0− 0|, |1− 0|, |0− 1|) = 1
H3(A,G) = max(|0− 1/2|, |0− 1/2|, |0− 0|) = 1/2
H3(A,E) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|) = 3/4
H3(B,G) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|) = 3/4
H3(B,E) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|) = 3/4
H3(D,G) = max(|0− 1/2|, |0− 1/2|, |1− 0|) = 1
H3(D,E) = max(|0− 1/4|, |0− 1/4|, |1− 1/2|) = 1/2
H3(G,E) = max(|1/2− 1/4|, |1/2− 1/4|, |0− 1/2|) = 1/2

Now we calculate the counterpart Hamming distances using (14) (with all
three parameters). The results are:

lIFS(A,B) = 0.5(|1− 0|+ |0− 1|+ |0− 0|) = 1
lIFS(A,D) = 0.5(|1− 0|+ |0− 0|+ |0− 1|) = 1
lIFS(B,D) = 0.5(|0− 0|+ |1− 0|+ |0− 1|) = 1
lIFS(A,G) = 0.5(|0− 1/2|+ |0− 1/2|+ |0− 0|) = 0.5
lIFS(A,E) = 0.5(|1− 1/4|+ |0− 1/4|+ |0− 1/2|) = 0.75
lIFS(B,G) = 0.5(|1− 1/4|+ |0− 1/4|+ |0− 1/2|) = 0.75
lIFS(B,E) = 0.5(|1− 1/4|+ |0− 1/4|+ |0− 1/2|) = 0.75
lIFS(D,G) = 0.5(|0− 1/2|+ |0− 1/2|+ |1− 0|) = 1
lIFS(D,E) = 0.5(|0− 1/4|+ |0− 1/4|+ |1− 1/2|) = 0.5
lIFS(G,E) = 0.5(|1/2− 1/4|+ |1/2− 1/4|+ |0− 1/2|) = 0.5
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i.e. the Hausdorff distance proposed by us (28) (using the membership, non-
membership and hesitation margin) and the Hamming distance (14) give fully
consistent results.

On the other hand, the Hamming distance (16) (with two parameters) does
not give the results consistent with the results of the counterpart Hausdorff
distance (26).

It is worth repeating again: although the values of the hesitation margins
are well known as the consequence of the memberships and non-memberships,
these values should not be discarded from the formulas while calculating the
Hamming or the Euclidean or the Hausdorff distances.

5.3 Qualitative Differences When Coming to Conclusions

The argument stated in the end of the previous section is of utmost importance
for virtually all similarity related and based approaches to pattern recognition,
classifications, decision making, and a whole array of other areas. In all these
cases final results do depend on which formula we use to calculate a distance.
The answers can be quite different when neglecting the information about
hesitation margins as shown below.

Example 1. Let A{<x, 0.1, 0.6, 0.3>}, B{<x, 0.4, 0.2, 0.4>}, and
C{<0.3, 0.1, 0.6>}.

The Hamming distances among these (one-element) sets calculated while
using formula (16) with two parameters only are:

l2(A,B) = 0.5(|0.1− 0.4|+ |0.6− 0.2|) = 0.35 (30)
l2(A,C) = 0.5(|0.1− 0.3|+ |0.6− 0.1|) = 0.35 (31)

i.e. the distance from A to B is equal to the distance from A to C.
Now let us calculate the Hamming distances using formula (14) with all

the three parameters. We obtain:

lIFS(A,B) = 0.5(|0.1− 0.4|+ |0.6− 0.2|+ |0.3− 0.4|) = 0.4 (32)
lIFS(A,C) = 0.5(|0.1− 0.3|+ |0.6− 0.1|+ |0.3− 0.6|) = 0.5 (33)

The answer is now qualitatively different as the distance from A to B is not
equal to the distance from A to C.

In fact there is nothing strange in the obtained qualitative differences.
They are obvious in the light of (24), and (25) showing in an analytical way
why the third parameters should not be discarded from the formulas. Neglect-
ing a part of information available (representing by hesitation margins) may
be rather strange from a point of view of, for instance, decision making. The
use of two-parameter formulas means just such a voluntary resignation from
an important part of information.
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The situation is the same while the distances are used to construct other
measures like entropy or similarity. One should have in mind that the obvious
fact, namely, that the possibility to calculate a hesitation margin from (5) is
quite different thing than neglecting this values (hesitation margins) in some
non-linear (!) measures (e.g. similarity measures). The problem is discusses in
detail in Szmidt and Kacprzyk [22,23] as far as some similarity measures and
entropy measures are concerned, respectively.

6 Conclusions

We discussed two ways of calculating distances between A-IFSs: using two-
parameter and three-parameter formulas. Our considerations can be summa-
rized as follows:

– Both kind of formulas are correct from a pure mathematical point of view
in the Minkowski r-metrics – all conditions are fulfilled for distances.

– In the Hausdorff metric only the three-parameters formula is correct. The
two-parameter formula is incorrect.

Although from a pure mathematical point of view we could use the two-
parameter formulas in the Minkowski r-metrics, there are important reasons
why we should not do this:

– The mathematical correctness of the two-parameter formulas in
Minkowski r-metrics does not coincide with the meaning of some concepts
essential for A-IFSs.

– Both the analytical and geometrical considerations show that the third
parameter should be present in the formulas.

– By using the two-parameter formulas we loose important information and
in effect the results obtained may be inconsistent with intuition, common-
sense, rational arguments, etc.

Therefore the three-parameter formulas are not only formally correct but
since they use all the available information, they give in effect results that are
correct and consistent with the essence of A-IFSs. Unfortunately, the same
can not be said about two-parameter formulas. This can often be a decisive
factor in practice.
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Summary. The paper discusses betting on sport events by a fuzzy-rational deci-
sion maker, who elicits interval subjective probabilities, which may be conveniently
described by intuitionistic fuzzy sets. Finding the optimal bet for this decision maker
is modeled and solved using fuzzy-rational generalized lotteries of II type. Approxi-
mation of interval probabilities is performed with the use of four criteria under strict
uncertainty. Four expected utility criteria are formulated on that basis. The scheme
accounts for the interval character of probability elicitation results. Index Terms. –
generalized lotteries of II type, intuitionistic fuzzy sets, fuzzy rationality, interval
probabilities.

1 Introduction

Decision theory [11] supports the decision maker (DM) in situations of choice
by balancing her/his preferences, beliefs and risk attitude. The utility theory
[19] analyzes preferences over risky alternatives with quantified uncertainty,
modeled as lotteries. The set of lotteries within a situation of choice forms the
lottery set L. A lottery is a prize set X with a probability function over it,
defining the chance to win some of X elements.

Let’s compare according to preference countless alternatives lcr
�c , defined

by a z-dimensional parameter �c that belongs to a continuous set C. Then
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L = {lcr
�c |�c ∈ C}. Let the alternative lcr

�c gives t�c number of one-dimensional
prizes x�c,r (for r = 1, 2, . . ., t�c). A continuous one-dimensional set of prizes X
results from the union of all x�c,r: X = {x�c,r|c̃ ∈ C, r = 1, 2, . . ., t�c}. Such
alternatives may be modeled with one-dimensional generalized lotteries of II
type (1D GL-II with z-dimensional parameter) [21].

Let the probability of the event θ�c,r “to receive the prize x�c,r from alterna-
tive lcr

�c ” is P�c(θc̃,r). Then the group of hypotheses θ�c,1, θ�c,2, . . . , θ�c,r, . . . , θ�c,t�c

is described in terms of probabilities by a one-dimensional classical discrete
probability function (DPF) – fd,�c(.):

<θ�c,r, P�c(θc̃,r)>, for r = 1, 2, . . . , t�c (1)

Let 1D GL-II with z-dimensional parameter, where uncertainty is de-
scribed by classical DPF, is called classical-risky:

lcr
�c = << θ�c,1, P�c(θ�c,1) >, x�c,1;< θ�c,2, P�c(θ�c,2) >, x�c,2; . . . ;< θ�c,t�c , (2)

P�c(θ�c,t�c) >, x�c,t�c >, for �c ∈ C.

Here

P�c(θ�c,r) ≥ 0, for r = 1, 2, . . ., t�c, at �c ∈ C, (3)
t�c∑

r=1

P�c(θ�c,r) = 1, for �c ∈ C. (4)

An equivalent more simplified representation of classical-risky 1D GL-II is:

lcr
�c = <P�c(θ�c,1), x�c,1; P�c(θ�c,2), x�c,2; . . . ;Pc̃(θ�c,t�c), x�c,t�c>. (5)

A utility function u(.) typical for the DM is defined over the elements of
X, such that

r∑
j=1

P�ci(θc̃i,j)u(x�ci,j) ≥
r∑

j=1

P�ck(θc̃k,j)u(x�ck,j) ⇔ lcr
�ci � lcr

c̃k , ∀ lcr
�ci ∈ L, ∀ lcr

�ck ∈ L.

(6)

Here, ), ∼, and � denote the binary relations of the DM “preferred to”,
“indifferent with” and “at least as preferred as” called respectively “strict pref-
erence”, “indifference”, and “weak preference”. The validity of (6) is based on
rationality axioms and theorems [12]. It follows from (6) that the alternatives
should be ranked according to a real-valued index called expected utility:

E�c(u/fd,�c) =
r∑

j=1

P�c(θ�c,j)u(x�c,j). (7)

Thus, a problem of multi-dimensional optimization on �c of the expected
utility (7) over the set C arises:

�copt =? such that E�copt
(u/fd,�copt

) ≥ E�c(u/fd,�c),�c ∈ C. (8)
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The most preferred lottery is lcr
�copt

. This task may be approached numeri-
cally as the only alternative in most practical cases.

The solution of the optimization task (8) at z = 1 may be found using dif-
ferent numerical techniques (e.g., golden section search, Keefer-Johnson, par-
abolic interpolation, etc.) for maximization of one-dimensional function in a
closed interval [10]. The Brendt method for one-dimensional optimization [24]
is used in [34]. The scanning method is to be preferred [14] since information
for the number of extremums of the expected utility is not present in the
general case.

The optimization task (8) at z > 1 is numerically solved, which is the
only alternative in most practical cases. There are many numerical methods
(e.g. gradient method, random search, Nelder-Meed method, Gauss-Newton
method, Levenberg-Marquardt, etc.) for optimization of multi-dimensional
function. If �c is of low dimension, it is best to use multi-dimensional scaling [14]
due to the same reasons emphasized for the one-dimensional case at z = 1.

Betting problems over the results of sport games may be modeled via
classical-risky 1D GL-II. However, subjective probabilities are always elicited
in the form of uncertainty intervals. Then the expected utility is also calcu-
lated in the form of uncertainty interval. This leads to non-transitivity of ∼
and mutual non-transitivity of) and∼. Since transitivity is a key aspect of ra-
tionality [11], and the declared preferences may be modeled by fuzzy sets [30],
then the DM is called fuzzy-ratinal [23]. There are different approaches to rank
alternatives, where uncertainty is described by interval probabilities. One pos-
sible approach is to rank the elements of L according to a criterion, resulting
from scalarization of the expected utility uncertainty interval Examples of
such techniques are the Γmax i min and Γmax i max criteria (where lotteries
are ranked in descending order respectively of the lower and upper margin of
the expected utility) [15, 26, 35]. The second possible approach requires com-
paring the elements of L by the length of real intervals [13, 18], e.g. interval
dominance method [37]. The third approach does not take into account the
expected utility uncertainty interval, but emphasizes on the dependencies of
expected utilty for different alternatives at different probability values. Maxi-
mality [16,36] and E-dominance fall within this group of techniques [27]. Only
the first approach gives equal results. In this paper the former is realized by
a two-step procedure, which employs criteria under strict uncertainty Q for
approximation of interval probabilities into point estimates and subsequent
ranking of the approximating alternatives according to expected utility. The
resulting criterion is called Q-expected utility.

In what follows, Sect. 2 analyzes the elicitation of subjective probabilities in
the form of uncertainty intervals and the subsequent partial non-transitivity.
Section 3 introduces ribbon DPFs, and fuzzy-rational GL-II are introduced on
that basis. In Sect. 4 an algorithm to rank fuzzy-rational 1D GL-II is presented,
where the approximation of interval probabilities is performed by the Laplace,
Wald, Hurwiczα and maximax criteria under strict uncertainty. Modelling and
solving problems with fuzzy-rational 1D GL-II is demonstrated in Sect. 5 and
discusses how to bet on the results of sport games.
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2 Subjective Elicitation of Probabilities

Whereas utilities measure DM’s preferences, probabilities are the measure of
uncertainty in risky choices. Of the three approaches to probabilities – clas-
sical, frequentist and subjective – the latter is most adequate for the purpose
of quantitative decision analysis. Subjective probability reflects the degree of
belief of the observer of the system (OS) that a random event shall occur [6].
Thus, unlike the other two cases, here probability is a function of the sub-
ject, and is unique for each OS, depending on her/his knowledge of the world,
beliefs and expectations. De Finetti’s coherence approach [7] gives the connec-
tion between beliefs and Kolmogorov’s probabilities [9], whereas the axiomatic
approach [8, 25] defines formal conditions that guarantee the rationality of
the OS.

To elicit the subjective probability of an event θc̃,r two bets are defined.
The first bet l1(θ�c,r) gives a huge prize at the moment T if the event θ�c,r

occurs, whereas the second bet l2(m,n) gives the same huge prize at the same
moment, if a white ball is drawn from an urn of n balls, of which m are
white.

The preferential equation l1(θ�c,r) ∼ l2(m,n) is solved according to m and
the root, divided by n, is P (θ�c,r). For an ideal DM, i.e., one with infinite
discriminating abilities, a unique m may be identified using dichotomy, which
is a solution of the equation. The real DM does not have infinite discriminating
abilities and his preferences deviate from rational preferences of the ideal
DM. As a result, the solution of the preferential equation is an interval of
values, which are a solution of the preferential equation l1(θ�c,r) ∼ l2(m,n).
That is why, the following is required: (1) the greatest possible m = mdown,
where the DM holds l1(θ�c,r) ) l2(mdown, n); (2) the smallest possible m =
mup, where the DM holds l2(mup, n) ) l1(θ�c,r). Then the root m(θ�c,r) ∈
[mdown;mup], and the subjective probability uncertainty interval is P (θ�c,r) ∈
[mup/n;mdown/n]. It may be elicited using different techniques, e.g. structured
belief in event trees [28], qualitative statements [5], infinite random sets [1],
etc. A quick and easy-to-use algorithm is proposed in [22] that uses triple
dichotomy [31]. The latter is a modification of dichotomy [24], which is used
three times – first, to find a point from the uncertainty interval of the root,
and two more times to find the margins of the interval.

It is obvious that for the real DM, ∼ is not transitive, whereas ) and ∼
are not mutually transitive. Let mup ≥ m2 > m1 ≥ mdown. Then for the real
DM: a) l2(m1, n) ∼ l1(θ�c,r), l1(θ�c,r) ∼ l2(m2, n) and l2(m2, n) ) l2(m1, n),
although transitivity of ∼ assumes l2(m2, n) ∼ l2(m1, n); b) l2(m2, n) )
l2(m1, n), l2(m1, n) ∼ l1(θ�c,r) and l2(m2, n) ∼ l1(θ�c,r), although transi-
tivity of ) and ∼ assume l2(m2, n) ) l1(θ�c,r); c) l1(θ�c,r) ∼ l2(m2, n),
l2(m2, n) ) l2(m1, n) and l1(θ�c,r) ∼ l2(m1, n), although transitivity of ∼
and ) assume l1(θc̃,r) ) l2(m1, n).
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3 Ribbon DPF and Fuzzy-Rational GL-II

Let the uncertainty in a one-dimensional discrete random variable X is par-
tially measured by one-dimensional DPF, which entirely lies within a lower
and an upper one-dimensional border functions. Such a one-dimensional DPF
will be called ribbon. If fR

d (.) is a one-dimensional ribbon DPF of X, which
may take only one of the fixed values x�c,1, x�c,2, . . ., x�c,t�c , whereas P d(.) and
Pu(.) are lower and upper border functions of fd,�c(.), then:

P d(x�c,r) ≤ fR
d,�c(xc̃,r) ≤ Pu(x�c,r), for r = 1, 2, . . ., t�c, (9)

0 ≤ P d(x�c,r) ≤ Pu(x�c,r) ≤ 1, for r = 1, 2, . . ., t�c, (10)
t�c∑

r=1

P d(x�c,r) ≤ 1 ≤
t�c∑

r=1

Pu(xc̃,r).

Each full group of disjoint events (hypotheses) may be partially probabilis-
tically described by ribbon DPF. Let θc̃,1, θ�c,2, . . . , θc̃,r, . . . , θ�c,t�c are a group
of hypotheses, and the index of the hypotheses is a one-dimensional discrete
random variable I with t�c possible values. Then:

P d(θ�c,r) = P d(r) ≤ fR
d,�c(r) = P (I = r) = P (θ�c,r) ≤ Pu(r) = Pu(θ�c,r),

for r = 1, 2, . . . , t�c. (11)

The equation (11) allows representing the ribbon DPF as:

<θ�c,r, P d(θ�c,r), 1− Pu(θ�c,r)>, for r = 1, 2, . . . , t�c. (12)

The border functions here depend on the realization r of I, and are defined
over the random variables θ�c,r. The quantities P d(θ�c,r) and Pu(θ�c,r) physically
represent the lower and upper margin of the probability uncertainty interval
of θ�c,r.

The form of the ribbon DPF (12) use the representation of intuitionistic
fuzzy sets [2]. This is based on the analogies between subjective probabilities
and degrees of membership to intuitionistic fuzzy sets discussed in [30], as
well as on the idea that any intuitionistic fuzzy event can be assigned interval
probability [29].

1D GL-II with a one-dimensional DPF is called fuzzy-rational. Then the
elements in L are denoted lfr

�c : L = {lfr
�c |�c ∈ C}.

Let the event θ�c,r “to receive the prize x�c,r from alternative lfr
�c ” has prob-

ability belonging to the closed interval [P d
�c (θ�c,r);Pu

c̃ (θ�c,r)]. Then the group of
hypotheses θ�c,1, θ�c,2, . . . , θ�c,r, . . . , θ�c,t�c is partially probabilistically described
by a one-dimensional ribbon DPF – fR

d,�c(.), with lower and upper border func-
tions P d

�c (.) and Pu
�c (.) of the kind (12).
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Now the alternatives may be represented as fuzzy-rational 1D GL-II:

lfr
�c = << θ�c,1, P

d
�c (θ�c,1), 1− Pu

c̃ (θ�c,1) >, x�c,1;< θ�c,2, P
d
�c (θ�c,2), 1− Pu

�c (θ�c,2) >,

x�c,2; . . . ;< θ�c,t�c , P
d
�c (θc̃,t�c), 1− Pu

�c (θ�c,t�c) >, x�c,t�c >, for �c ∈ C. (13)

The conditions (9) hold here for each �c ∈ C.

4 Ranking Fuzzy-Rational 1D GL-II

Expected utility criterion (7) can be applied to rank fuzzy-rational 1D GL-II
only if P d

�c (θ�c,r) = Pu
�c (θ�c,r). As long as P d

�c (θ�c,r) < Pu
�c (θ�c,r) for at least one p

they need to be approximated by classical-risky ones, which is a problem un-
der strict uncertainty [4]. Thus, ranking fuzzy-rational 1D GL-II is a problem
of mixed “strict uncertainty-risk” type. The main idea is to use a criterion
Q under strict uncertainty for the transformation at this stage, which de-
spite their disadvantages are well known techniques that reflect the degree of
pessimism/optimism of the fuzzy-rational DM. The resulting approximating
lotteries are called Q-lotteries. At the second stage, the Q-lotteries must be
ranked. This is a problem under risk and is approached by expected utility.
This two-stage procedure to rank fuzzy-rational lotteries is equivalent to the
introduction of the a ranking criterion, called Q-expected utility.

Since the alternatives in L are countless then it is impossible to rank them
all. The work [33] proposes that the most preferred fuzzy-rational GL-II from
L is defined on three stages:

(1) Through a chosen criterion under strict uncertainty Q, each ribbon
DPF – fR

d,�c(.), is approximated by a classical DPF – fQ
d,�c(.):

P d
�c (θ�c,r) ≤ fQ

d,c̃(r) = PQ
�c (θ�c,r) ≤ Pu

�c (θ�c,r), for �c ∈ C. (14)

In that way each fuzzy-rational GL-II is approximated by a classical-risky
GL-II, called Q-GL-II:

lQ�c = << θ�c,1, P
Q
c̃ (θ�c,1) >, x�c,1;< θ�c,2, P

Q
�c (θ�c,2) >, x�c,2; . . . (15)

. . . ;< θ�c,t�c , P
Q
�c (θ�c,t�c) >, x�c,t�c >, for c̃ ∈ C.

(2) The alternatives may be compared according to preference according
to the expected utility of the Q-GL-II with a multi-dimensional parameter:

EQ
�c

(
u/fR

d,�c

)
=

t�c∑
r=1

PQ
�c (θ�c,r)u(x�c,r). (16)

(3a) At z = 1, the most preferred fuzzy-rational GL-II with a one-
dimensional parameter, lfr

copt
, is defined by the one-dimensional optimization

task:
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copt =? such that EQ
copt

(
u/fR

d,copt

)
≥ EQ

c

(
u/fR

d,c

)
, for c ∈ C. (17)

(3b) At z > 1 the most preferred fuzzy-rational GL-II with a multi-
dimensional parameter, lfr

�copt
, is defined by the z-dimensional optimization

task:

�copt =? such that EQ
�copt

(u/fR
d,�copt

) ≥ EQ
�c (u/fR

d,�c), for �c ∈ C. (18)

The resulting criterion to rank fuzzy-rational GL-II is called Q-expected
utility. If certain criteria under strict uncertainty are applied, then the discrete
utility function u(.)is used in the approximation of fR

d,�c by fQ
d,�c. If the chosen

criterion is Laplace, Wald, maximax or Hurwiczα, then the approximation
may be performed using the procedures for ordinary lotteries in [32].

4.1 Approximation Using Laplace (Q = L)

The probabilities PL
�c (θ�c,r), for r = 1, 2, . . . , t�c, do not depend on the utility

function. According to the Laplace principle of insufficient reason, if no infor-
mation is available for a group of hypotheses, then each hypothesis is assumed
equally probable. Then probability estimates are weighed average of the lower

and upper margin, such that
t�c∑

r=1
PL

�c (θ�c,r) = 1. Let α
(�c)
L be the Laplace weight

coefficient, defined in [20]:

α
(�c)
L =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−
t�c∑

r=1
P d

�c (θ�c,r)

t�c∑
r=1

P u
�c

(θ�c,r)−
ti∑

r=1
P d
c̃ (θ�c,r)

, for
t�c∑

r=1
Pu

�c (θ�c,r) >
ti∑

r=1
P d

�c (θ�c,r)

0.5, for
t�c∑

r=1
Pu

�c (θ�c,r) =
ti∑

r=1
P d

�c (θc̃,r)

(19)

Then:

PL
�c (θ�c,r) = [1− α

(�c)
L ]P d

�c (θ�c,r) + α
(�c)
L Pu

�c (θ�c,r), for r = 1, 2, . . . , t�c. (20)

4.2 Approximation Using Wald (Q = W )

The Wald criterion for coincides with the criterion Γmax i min (see Sect. 1).
Then the probabilities PW

�c (θ�c,r), for r = 1, 2, . . . , t�c are defined so that the

W -expected utility of the lottery is minimal and
tc̃∑

r=1
PW

�c (θ�c,r) = 1. Let

ρ(1), ρ(2), . . . , ρ(ti) is the permutation of 1, 2,. . . , t�c, such that

u(x�c,ρ(1)) ≥ u(x�c,ρ(2)) ≥ . . . ≥ u(x�c,ρ(t�c)). (21)
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The index of the critical Wald prize r
(�c)
W and the Wald weight coefficient

β(�c) [20] must be defined for each alternative. For that purpose the required
Wald weight coefficient β

(�c)
r , for r = 1, 2, . . ., t�c for each prize is defined:

β
(�c)
ρ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−
t�c∑

k=r+1
P u

�c (θ�c,ρ(k))−
r∑

k=1
P d

�c (θ�c,ρ(k))

P u
�c

(θ�c,ρ(r))−P d
�c

(θ�c,ρ(r))
, for P u

�c (θ�c,ρ(r)) > P d
�c (θ�c,ρ(r))

0,

for P u
�c (θ�c,ρ(r)) = P d

�c (θ�c,ρ(r))

and

(
t�c∑

k=1

P u
c̃ (θ�c,ρ(k))

>
t�c∑

k=1

P d
�c (θ�c,ρ(k)) or r < t�c

)

1, for
t�c∑

k=1

P u
c̃ (θ�c, ρ(k))

=
t�c∑

k=1

P d
�c (θ�c, ρ(k)) and r = tc̃

(22)

r
(�c)
W = arg{β(�c)

r ∈ (0; 1]}, (23)

β(�c) = β
(�c)

r
(�c)
W

. (24)

On the basis of (22)–(24) it follows that

P W
�c (θ�c,r) =

⎧⎪⎨
⎪⎩

P d
�c (θ�c,r), for ρ(r) < ρ(r

(�c)
W )

[1 − β(i)]P d
�c (θ�c,r) + β(i)P u

�c (θ�c,r), for ρ(r) = ρ(r
(�c)
W )

P u
�c (θ�c,r), for ρ(r) > ρ(r

(�c)
W )

, r = 1, 2, . . ., t�c

(25)

4.3 Approximation Using Maximax Criterion (Q = ¬W )

The maximax criterion coincides with the Γmax i max criterion. The probabil-
ities P¬W

�c (θ�c,r), for r = 1, 2, . . ., t�c may be found by the dependencies in Sect.
4.2 using the dependence:

u(x�c,r) = −u(x�c,r), for r = 1, 2, . . ., t�c. (26)

4.4 Approximation Using Hurwiczα(Q = Hα)

The Hurwiczα criterion under strict uncertainty assumes that the choice may
be made by a numerical index, which is a sum of the worst and the best
that may occur, weighted by the pessimistic index α ∈ [0; 1]. The application
of this idea means to define the probabilities PHα

�c (θ�c,r), for r = 1, 2, . . ., t�c,
as a weighed value of the probabilities PW

�c (θ�c,r) and P¬W
�c (θ�c,r) in Sects. 4.2

and 4.3 [32]:
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PHα

�c (θ�c,r) = αPW
�c (θ�c,r) + (1− α)P¬W

�c (θ�c,r), for r = 1, 2, . . ., t�c. (27)

Here, α ∈ [0; 1] is a pessimistic index, measuring the pessimism of the DM.
Each of the transformations may be also described by intuitionistic oper-

ators necessity (?), possibility (♦) and their fuzzy generalization Dα [3].

5 Example for Ranking Fuzzy-Rational GL-II

The example in this section is solved in [33] with a specialized software,
available upon request.

5.1 (A) Setup

A bookmakers’ house offers bets on the results of a football match between the
teams A (host) and B (guest). The DM may bet non-negative sums (in dollars)
c1, c2 and c3 of each result – home win (event θ1), draw (event θ2) and away win
(event θ3). The coefficients over the three results are coef1 = 4/3, coef2 = 3.5
and coef3 = 6. The betting rules from the general setup in Appendix apply
here.

According to the fuzzy-rational DM, the uncertainty interval of the events
θ1, θ2 and θ3 are:

P (θ1) = [0.18; 0.22], P (θ2) = [0.45; 0.55], P (θ3) = [0.21; 0.29]. (28)

The DM must decide how to bet $100 on the results from the competition.
At the given coefficients, the DM may have maximal profit of $500 (if she/he
successfully bets $100 on θ1) and maximal loss of $100 (if she/he unsuccessfully
bets $100 on an arbitrary outcome). The utility function of the DM over the
net profit in US dollars from the bet x is approximated in the interval [−$100;
$500] using the analytical form (29) and is depicted on Fig. 1:

u(x) =
arctg(0.01x + 2)− arctg(1)

arctg(7)− arctg(1)
. (29)

5.2 (B) Modelling Using Fuzzy-Rational GL-II

The defined problem may be restated using one-dimensional fuzzy-rational
GL-II with a three-dimensional parameter �c = (c1, c2, c3), belonging to a
continuous three-dimensional set C:

C = {�c = (c1, c2, c3)|c1 ≥ 0 ∧ c2 ≥ 0 ∧ c3 ≥ 0 ∧ c1 + c2 + c3 ≤ 100}. (30)
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Fig. 1. Graphics of the utility function over net profits in the interval [−$100; $500]

Alternatives may be represented by fuzzy-rational GL-II, according to
(13):

lfr
�c = << θ1, 0.18, 0.78 >, xc̃,1;< θ2, 0.45, 0.45 >, x�c,2; (31)

< θ3, 0.21, 0.71 >, x�c,3 >, for �c ∈ C.

In (31), the events and their probabilities do not depend on �c unlike one-
dimensional prizes, which at the given coefficients are

x�c,1 = c1/3− c2 − c3, x�c,2 = 5c2/2− c1 − c3, x�c,3 = 5c3 − c1 − c2. (32)

At a chosen criterion Q, the Q-expected utility EQ
�c (u/p) of each alternative

may be calculated. The optimal bet may be defined by the three-dimensional
optimization task:

�copt = ?,qeEQ
�copt

(u/p) ≥ EQ
�c (u/p), for �c ∈ C. (33)

Solving (33) is not required for the reasons listed below.
Obviously if

(1/coefj) > 1, (34)

Then the only meaningful bet is cj = 0, because all positive bets are
Dutch books leading to losses for all results. Bookmakers’ houses never set
coefficients lower than one, since no one bets on them.

Although not that obvious, the first statement may be summarized for the
case of bets over two results from a football match. If

(1/coefj) + (1/coefi) > 1, (35)

then for each bet with positive ci and cj there exists a bet c′i and c′j , always
resulting in higher profits, where c′i < ci, c

′
j < cj and at least one c′i and c′j

is 0. This means that if (35) holds, there will never be an optimal bet with
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positive ci and cj , because this can be represented as a simultaneous betting
on c′i and c′j and a Dutch book.

Similar statement may be formulated for the case of bets over all possible
results from the football match. If

(1/coef1) + (1/coef2) + (1/coef3) > 1, (36)

then for each bet with positive c1, c2 and c3, there exists a bet with c′1, c
′
2 and

c′3, always resulting in higher profits, where c′1 < c1, c
′
2 < c2, c

′
3 < c3 and at

least one of c′1, c
′
2 and c′3 is 0. This means that if (36) holds, no bet with positive

c1, c2 i c3 will be optimal, since it can be represented as a simultaneous betting
of c′1, c

′
2 and c′3 and a Dutch book. The condition (36) I always holds, otherwise

bookmakers’ houses will be in a Dutch book themselves. That is why gamblers
never bet on all three outcomes from a football match.

All stated assumptions are a special cases of the theorem for the domi-
nating bet, defined and proven in Appendix, at n = 3 and cardinality of Jp

respectively 1, 2 and 3.
In the analyzed problem,

(1/coef1) + (1/coef2) + (1/coef3) = 3/4 + 2/7 + 1/6 = 101/84 > 1, (37)
(1/coef1) + (1/coef2) = 3/4 + 2/7 = 29/28 > 1, (38)
(1/coef1) + (1/coef3) = 3/4 + 1/6 = 11/12 < 1, (39)
(1/coef2) + (1/coef3) = 2/7 + 1/6 = 19/42 < 1, (40)

The aforementioned statements allow to decompose the three-dimensional
optimization task (33) to three one-dimensional and two two-dimensional op-
timization tasks.

(B1) First (One-Dimensional) Task

The three-dimensional parameter �c1 belongs to a continuous one-dimensional
set C1:

C1 = {�c1 = (c1, c2, c3)|c1 ≥ 0 ∧ c1 ≤ 100 ∧ c2 = 0 ∧ c3 = 0}. (41)

Since c2,opt and c3,opt in C1 are zero, then the optimal bet can be defined
by the one-dimensional optimization task on c1:

c1,opt =?, for EQ
�c1,opt

(u/p) = EQ
c1,opt

(u/p) ≥ EQ
c1

(u/p) = EQ
�c1

(u/p), for �c1 ∈ C1.

(42)

(B2) Second (One-Dimensional) Task

The three-dimensional parameter �c2 belongs to a continuous one-dimensional
set C2:

C2 = {�c2 = (c1, c2, c3)|c2 ≥ 0 ∧ c2 ≤ 100 ∧ c1 = 0 ∧ c3 = 0}. (43)
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Since c1,opt and c3,opt in C2 are zero, then the optimal bet may be defined
by the one-dimensional optimization task on c2:

c2,opt =?, for EQ
�c2,opt

(u/p) = EQ
c2,opt

(u/p) ≥ EQ
c2(u/p) = EQ

�c2
(u/p), for c2 ∈ C2.

(44)

(B3) Third (One-Dimensional) Task

The three-dimensional parameter �c3 belongs to a continuous one-dimensional
set C3:

C3 = {�c3 = (c1, c2, c3)|c3 ≥ 0 ∧ c3 ≤ 100 ∧ c1 = 0 ∧ c2 = 0}. (45)

Since c1,opt and c2,opt in C3 are zero, then the optimal bet may be defined
by the one-dimensional optimization task on c3:

c3,opt = ?,qeEQ
�c3,opt

(u/p) = EQ
c3,opt

(u/p) ≥ EQ
c3

(u/p)

= EQ
�c3

(u/p), za �c3 ∈ C3. (46)

(B4) Fourth (Two-Dimensional) Task

The three-dimensional parameter �c4 belongs to a continuous two-dimensional
set C4:

C4 = {�c4 = (c1, c2, c3)|c1 > 0 ∧ c3 > 0 ∧ c1 + c3 ≤ 100 ∧ c2 = 0}. (47)

Since c2,opt in C4 is zero, then the optimal bet may be defined by the
two-dimensional optimization task on c1 and c3:

�c4,opt = ?,where EQ
�c4,opt

(u/p) = EQ
c1,opt,c3,opt

(u/p) ≥ EQ
c1,c3

(u/p)

= EQ
�c4

(u/p), c̃4 ∈ C4. (48)

(B5) Fifth (Two-Dimensional) Task

The three-dimensional parameter �c5 belongs to a continuous two-dimensional
set C5:

C5 = {�c5 = (c1, c2, c3)|c2 > 0 ∧ c3 > 0 ∧ c2 + c3 ≤ 100 ∧ c1 = 0}. (49)

Since c1,opt in C5 is zero, then the optimal bet may be defined by the
two-dimensional optimization task on c2 and c3:

�c5,opt = ?,where EQ
�c5,opt

(u/p) = EQ
c2,opt,c3,opt

(u/p) ≥ EQ
c2,c3

(u/p)

= EQ
�c5

(u/p), c̃5 ∈ C5. (50)
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After solving tasks B1 from B5, the solution of (33) is the optimal bet
with the highest Q-expected utility:

�copt = �ciopt,opt (51)

where
iopt = arg max

i

{
EQ

�ci,opt
(u/p)|i = 1, 2, . . . , 5

}
(52)

5.3 (C) Solution Using Hurwiczα

The solution according to the Wald expected utility is a special case of the
solution according to Hurwiczα expected utility for α = 1, which shall be dis-
cussed later. The five optimization tasks are solved using Hurwiczα expected
utility for 51 values of α = 0, 0.02, 0.04, . . ., 1. It turns out that at all val-
ues of α, iopt = 5 and according to (51), �copt = �c5,opt. Figure 2 presents
the optimal bets c2,opt and c3,opt, as well as the Hurwiczα expected utility
EHα

c2,opt,c3,opt
(u/p) as functions of α. For example, at α = 0 the solution de-

generates to the one using the maximax expected utility. The optimal bet
of c2,opt = $65 and c3,opt = $33 (corresponding to �c5,opt = (0, 65, 33)) has
maximal maximax expected utility E¬W

�c5,opt
(u/p) = E¬W

c2,opt,c3,opt
(u/p) = 0.62.

5.4 (C) Solution According to Laplace

Figure 3 presents the graphics of the Laplace expected utility depending on
the parameter in the three one-dimensional tasks, which are solved using the
scanning method with a step of $1. The optimal single bets c1,opt = $0, c2,opt =
$39 or c3,opt = $14 (corresponding to c̃1,opt = (0, 0, 0), �c2,opt = (0, 39, 0)
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Fig. 2. Optimal bets and maximal Hurwiczα expected utility as a function of α
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Fig. 3. Laplace expected utility of possible single bets

and �c3,opt = (0, 0, 14)) have maximal Laplace expected utilities respectively
EL

�c1,opt
(u/p) = EL

c1,opt
(u/p) = 0.50, EL

�c2,opt
(u/p) = EL

c2,opt
(u/p) = 0.545 and

EL
�c3,opt

(u/p) = EL
c3,opt

(u/p) = 0.512.
When solving the fourth (two-dimensional) optimization task it turns out

that there is no maximum in C4, but a supremum EL
�c4,sup

(u/p), coinciding
with the maximum in C3. Since this result coincides with the solution of the
third (optimization) task, then the solution is not presented, and the optimal
value of the Laplace expected utility is EL

�c4,opt
(u/p) = EL

c1,opt,c3,opt
(u/p)=−∞.

The fifth (two-dimensional) task is solved using two-dimensional scanning,
with a step of $1 on both coordinates. Figure 4 (lower graph) presents the op-
timal bet c3,opt(c2) depending on c2, which has the maximal Laplace expected
utility at a draw bet c2. Fig. 4 (upper graph) represents the maximal Laplace
expected utility depending on c2, calculated at c2 and c3,opt(c2). The optimal
bet of c2,opt = $58 and c3,opt = $30 (corresponding to c̃5,opt = (0, 58, 30)) has
a maximal Laplace expected utility EL

�c5,opt
(u/p) = EL

c2,opt,c3,opt
(u/p) = 0.96.

Form (52) it follows that iopt = 5. According to (51), �copt = �c5,opt =
(0, 58, 30) and the best option for the fuzzy-rational DM that uses the Laplace
expected utility criterion, at the given coefficients and the elicited subjective
probabilities, is to put $0 on home win, $58 on draw and $30 on away win.
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Fig. 4. Optimization according to Laplace and expected utility of the double bet
on draw and away win

The fifth (two-dimensional) task is solved using two-dimensional scanning,
with a step of $1 on both coordinates. Figure 4 (lower graph) shows the optimal
bet c3,opt(c2) depending on c2, which gives maximal Laplace expected utility
at a draw bet c2. Figure 4 (upper graph) shows the Laplace expected utility
depending on c2, calculated at c2 and c3,opt(c2). The optimal bet of c2,opt =
$58 and c3,opt = $30 (corresponding to �c5,opt = (0, 58, 30)) has a maximal
Laplace expected utility EL

c̃5,opt
(u/p) = EL

c2,opt,c3,opt
(u/p) = 0.96.

From (52) it follows that iopt = 5. According to (51), �copt = �c5,opt =
(0, 58, 30) and the bets option for the fuzzy-rational DM that uses the Laplace
expected utility criterion, at the given coefficients and the elicited probabili-
ties, is to bet $0 on home win, $58 on draw, and $30 on away win.

5.5 (D) Solution According to Wald

Figure 5 shows the graphics of the Wald expected utility depending on
the corresponding parameter in the three one-dimensional tasks, which are
solved using the scanning method with a step of $1. The optimal single
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bets c1,opt = $0, c2,opt = $34 or c3,opt = $9 (corresponding respectively
to �c1,opt = (0, 0, 0),�c2,opt = (0, 34, 0) and �c3,opt = (0, 0, 9)) give maxi-
mal Wald expected utilities respectively EW

�c1,opt
(u/p) = EW

c1,opt
(u/p) = 0.5,

EW
�c2,opt

(u/p) = EW
c2,opt

(u/p) = 0.534 and EW
�c3,opt

(u/p) = EW
c3,opt

(u/p) = 0.505.
When solving the fourth (two-dimensional) task it turns out that there

is no maximum in C4, but a supremum EW
�c4,sup

(u/p) that coincides with the
maximum in C3. Since this result coincides with the result of the third (one-
dimensional) task, the solution is not presented, and the optimal value of the
Wald expected utility is EW

�c4,opt
(u/p) = EW

c1,opt,c3,opt
(u/p) = −∞.

The fifth (two-dimensional) task is solved using two-dimensional scanning
with a step of $1 on both coordinates. Figure 6 (lower graph) shows the optimal
bet c3,opt(c2) depending on c2, which gives the maximal Wald expected utility
at a draw bet c2. Figure 6 (upper graph) shows the Wald expected utility
depending on c2, calculated at c2 and c3,opt(c2). The optimal bet of c2,opt =
$54 and c3,opt = $31 (corresponding to �c5,opt = (0, 54, 31)) has a maximal
Wald expected utility EW

�c5,opt
(u/p) = EW

c2,opt,c3,opt
(u/p) = 0.59.

Form (52) it follows that iopt = 5. According to (51), �copt = �c5,opt =
(0, 54, 31) and the best option for the fuzzy-rational DM using the Wald
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expected utility criterion, at the given coefficients and the elicited proba-
bilities, is to put $0 on home win, $54 on draw and $31 on away win.

6 Conclusions

In the optimization according to Hurwiczα, the elicitation of α is performed
using the classical scheme from [11]. Further studies in the application of this
criterion should be based on more sophisticated ways of measuring the pes-
simistic criterion. It is important to mention that in the use of some criteria
under strict uncertainty, the probabilities depend on the preferences of the
DM, which violated expected utility. In such cases the DM is called “proba-
bilistically sophisticated non-expected utility maximizer” according to [17].

The presented scheme in the paper is a universal method to bet on the
results of sport games, which allows choosing the optimal bet depending on the
interval subjective probabilities of the DM and her/his optimism/pessimism.
In the revised example, the subjective probabilities do not depend on the sum,
but at large bets it is possible to illegally manipulate the result of the game.
Such situation may be modeled with GL-II, where not only prizes, but also
states together with the DPF that describe them shall be functions of the
z-dimensional parameter �c. All calculations in the example were performed
using original software, which is accessible free of charge upon request from
the authors.
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Appendix: General Betting Setup

Let us accept non-negative bets at coefficients α1, α2, . . . , αn for the occur-
rence respectively of one out of n > 1 number of hypotheses θ1, θ2, . . . , θn, for
which

θj ∩ θk = ©/, at j = 1, 2, . . ., n and at k = 1, 2, . . ., j − 1, j + 1, . . ., n, (A1)
θ1 ∪ θ2 ∪ . . . ∪ θn = Ω.

In (A1), ∩ stands for “intersection”, ∪ stands for “union”, ©/ is the null
event, and Ω is the certain event. Let

Jf = {1, 2, . . ., n}. (A2)

All coefficients are positive:

αj > 0, za j ∈ Jf . (A3)

In practice, the condition (A3) is much stronger, since coefficients equal to
at least one. It is possible to bet �c = (c1, c2, . . ., cn) on each outcome, where

cj ≥ 0, za j ∈ Jf (A4)∑
j∈Jf

cj > 0. (A5)

If θj occurs, the sum of αjcj shall be paid to the DM, and the net profit
will be

Prj = αjcj −
∑
j∈Jf

cj . (A6)

Definition for a prize of the bet:
Let the prize of a given bet be the investment that must be made in

advance:
Inv(�c) =

∑
j∈Jf

cj . (A7)

Definition of dominance:
The bet c̃′ = (c′1, c

′
2, . . . , c

′
n) dominates the bet �c = (c1, c2, . . ., cn) if at all

θj the profit from the second bet is not smaller than that of the first bet, and
for at least one θj the profit is higher:

Pr′j − Prj ≥ 0, for j ∈ Jf , (A8)∑
j∈Jf

(
Pr′j − Prj

)
> 0. (A9)
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In (A8) and (A9), Pr′j is the profit from c̃′ at the occurrence of θj

Pr′j = αjc
′
j −

∑
j∈Jf

c′j . (A10)

Theorem for the dominated bet
Let the bet �c be made under the general betting setup, which defines the

set Jp:
Jp = {j/j ∈ Jf ∧ cj > 0}. (A11)

where ∧ means “conunction”. The cardinality of (A11) is at least 1, because
according to (A5) there is at least one event, over which a positive sum has
been placed. If the following condition holds:∑

j∈Jp

1
αj

> 1, (A12)

then there exists a cheaper bet c̃′ = (c′1, c
′
2, . . . , c

′
n), which dominates �c =

(c1, c2, . . ., cn).

Proof. Let Jz be the set of indices of the events θ1, θ2, . . . , θn, over which no
positive sum has been placed:

Jz = {j/j ∈ Jf ∧ j /∈ Jp}. (A13)

The set Jz may as well be empty.
Let i be the index of the hypothesis that gives minimal positive income:

i = arg min
j∈Jp

{αjcj} . (A14)

The set J contains all indices of events that are different from i, over which
a positive sum has been placed:

J = {j/j ∈ Jp ∧ j �= i}. (A15)

The set J may be empty.
Let the bet c̃′ = (c′1, c

′
2, . . . , c

′
n) be defined as follows:

c′j =

{
cj at j ∈ Jz

cj − αici/αj at j ∈ Jp
. (A16)

It will be proven in three steps that the bet c̃′ is cheaper than �c and
dominates �c.

Step 1. The bet c̃′ = (c′1, c
′
2, . . . , c

′
n) is possible, i.e. c′j ≥ 0, for j ∈ Jf . ��

Proof. Two cases shall be revised to prove the statement.
Case 1 : Let j ∈ Jz.
Then according to (A16),

c′j = cj . (A17)
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By definition, j ∈ Jz, thus
cj = 0. (A18)

From (A17) and (A18) it follows that

c′j = 0 at j ∈ Jz. (A19)

Case 2 : Let j ∈ Jp.
Then according to (A16),

c′j = cj −
αici

αj
=

αjcj − αici

αj
. (A20)

According to (A4) the numerator of (A20) is non-negative, and the denom-
inator is positive according to (A3). Then it follows that the fraction (A20)
is non-negative:

c′j ≥ 0 at j ∈ Jp. (A21)

Summary of step 1 : Since Jp ∪ Jz = Jf , then from (A19) and (A20) it
follows that the bet c̃′ = (c′1, c

′
2, . . . , c

′
n) is possible, because c′j ≥ 0 holds for

j ∈ Jf . ��
Step 2. The price Inv(�c) of �c is higher than the price Inv(c̃′) of c̃′:

Inv(�c) > Inv(c̃′). (A22)

Proof. The price Inv(c̃′) of c̃′ is:

Inv(c̃′) =
∑
j∈Jf

c′j =
∑
j∈Jp

c′j +
∑
j∈Jz

c′j . (A23)

From (A23), according to (A16) and (A13) it follows that

Inv(c̃′) =
∑
j∈Jp

(
cj −

αici

αj

)
+
∑
j∈Jz

cj =
∑
j∈Jp

cj−αici

∑
j∈Jp

1
αj

+
∑
j∈Jz

0. (A24)

From (A24), taking into account the definition (A7) it follows that

Inv(c̃′) = Inv(�c)− αici

∑
j∈Jp

1
αj

. (A25)

From (A14) it follows that αici > 0 and then according to (A3) it follows
that:

αici

∑
j∈Jp

1
αj

> 0. (A26)

From (A25) and (A26) it follows that c̃′ = (c′1, c
′
2, . . . , c

′
n) is cheaper than

�c = (c1, c2, . . ., cn):

Inv(�c) =
∑
j∈Jf

cj >
∑
j∈Jf

c′j = Inv(c̃′). (A27)

��



www.manaraa.com

Fuzzy-Rational Betting on Sport Games with Interval Probabilities 451

Step 3. At the occurrence of an arbitrary event θ1, θ2, . . . , θn, the profit
from c̃′ is higher than that from �c:

Pr′j > Prj , for j ∈ Jf . (A28)

Proof. Three cases shall be revised to prove the statement.
Case 1: Let j = i.
Then from (A6), (A11) and (A13), the following holds for the bet �c:

Prj = Pri = αici −
∑
j∈Jf

cj = αici −
∑
j∈Jp

cj −
∑
j∈Jz

cj

= αici −
∑
j∈Jp

cj −
∑
j∈Jz

0 = αici −
∑
j∈Jp

cj (A29)

From (A10), (A16), (A11) and (A13), the following holds for the bet c̃′:

Pr′j = Pr′i = αic
′
i −

∑
j∈Jf

c′ = αi

(
ci −

αici

αi

)
−
∑
j∈Jp

c′j −
∑
j∈Jz

c′j

= αi × 0−
∑
j∈Jp

c′j −
∑
j∈Jz

cj = −
∑
j∈Jp

(
cj −

αici

αj

)
−
∑
j∈Jz

0

= αici

∑
j∈Jp

1
αj

−
∑
j∈Jp

cj . (A30)

From (A29) and (A30) it follows that the difference in the profits from
both bets is

Pr′j − Prj = αici

∑
j∈Jp

1
αj

− αici = αici

⎛
⎝∑

j∈Jp

1
αj

− 1

⎞
⎠ . (A31)

From (A12) it follows that

∑
j∈Jp

1
αj

− 1 > 0. (A32)

From (A14) it follows that αici > 0 and then according to (A32) and (A31)
it follows that:

Pr′j > Prj , for j = i. (A33)

Case 2: Let j ∈ J .
Then from (A6), (A11) and (A13), the following holds for the bet �c:

Prj = αjcj −
∑
j∈Jf

cj = αjcj −
∑
j∈Jp

cj −
∑
j∈Jz

cj = αjcj −
∑
j∈Jp

cj − 0

= αjcj −
∑
j∈Jp

cj (A34)
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From (A10), (A16), (A11) and (A13), the following holds for the bet c̃′:

Pr′j = αj × c′j −
∑
j∈Jf

c′j = αj

(
cj −

αici

αj

)
−
∑
j∈Jp

c′j −
∑
j∈Jz

c′j (A35)

= αjcj − αici −
∑
j∈Jp

(
cj −

αici

αj

)
−
∑
j∈Jz

cj

= αjcj − αici + αici

∑
j∈Jp

1
αj
−
∑
j∈Jp

cj −
∑
j∈Jz

0

= αjcj − αici + αici

∑
j∈Jp

1
αj
−
∑
j∈Jp

cj .

From (A34) and (A35) it follows that the difference in the profits from
both bets is

Pr′j − Prj = αjcj − αici + αici

∑
j∈Jp

1
αj
−
∑
j∈Jp

cj − αjcj +
∑
j∈Jp

cj

= αici

∑
j∈Jp

1
αj

− αici = αici

⎛
⎝∑

j∈Jp

1
αj

− 1

⎞
⎠ . (A36)

This is the same difference as in (A31), which was proven to be positive.
Thus

Pr′j > Prj , for j ∈ J. (A37)

Case 3: Let j ∈ Jz

Then from (A6), (A13) and (A7), the following holds for the bet �c

Prj = αjcj −
∑
j∈Jf

cj = αj × 0− Inv(�c) = −Inv(�c). (A38)

From (A10), (A16), (A13) and (A23), the following holds for the bet c̃′:

Pr′j = αj×c′j−
∑
j∈Jf

c′j = αjcj−Inv(c̃′) = αj×0−Inv(c̃′) = −Inv(c̃′). (A39)

From (A39) and (A40) it follows that the difference in the profits from
both bets is

Pr′j − Prj = −Inv(c̃′) + Inv(�c) = Inv(�c)− Inv(c̃′). (A40)

In step 2 it has been proven that Inv(�c) > Inv(c̃′), according to (A27).
Then from (A40) it follows that

Pr′j > Prj , for j ∈ Jz. (A41)

��
Summary of step 3 : Since {i} ∪ J ∪ Jz = Jf , then from (A33), (A37) and

(A41) it follows that the bet c̃′ = (c′1, c
′
2, . . . , c

′
n) dominates �c = (c1, c2, . . ., cn),

because (A28) holds.
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Summary. We discuss the problem of classification of imbalanced and overlapping
classes. A fuzzy set approach is presented first – the classes are recognized using a
fuzzy classifier. Next, we use intuitionistic fuzzy sets (A-IFSs, for short)1 to represent
and deal with the same data. We show that the proposed intuitionistic fuzzy clas-
sifier has an inherent tendency to deal efficiently with imbalanced and overlapping
data. We explore in detail the evaluation of the classifier results (especially from
the point of view of recognizing the smaller class). We show on a simple example
the advantages of the intuitionistic fuzzy classifier. Next, we illustrate its desirable
behavior on a benchmark example (from UCI repository).

1 Introduction

The problem of imbalanced classes arises for a two-class classification prob-
lem, when the training data for one class greatly outnumbers the other class.
Imbalanced and overlapping classes hinder the performance of the standard
classifiers which are heavily biased in recognizing mostly the bigger class since
there are built to achieve overall accuracy to which the smaller class con-
tributes very little.

The problem is not only a theoretical challenge but it concerns many dif-
ferent types of real tasks. Examples are given by Kubat et al. [14], Fawcett and
Provost [12], Japkowicz [13], Lewis and Catlett [15], Mladenic and Grobelnik
[16]. To deal with the imbalance problems usually up-sampling and down-
sampling are used. Alas, both methods interfere in the structure of the data,
and in a case of overlapping classes even the artificially obtained balance
does not solve the problem (some data points may appear as valid examples in
1 Recently there is a debate on the suitability of the name intuitionistic fuzzy set

but this is beyond the scope of this paper and we will not deal with this. To avoid
any confusion we will call the sets: “Atanassov’s intuitionistic fuzzy sets” (A-IFSs
for short).

E. Szmidt and M. Kukier: Atanassov’s Intuitionistic Fuzzy Sets in Classification of Imbalanced

and Overlapping Classes, Studies in Computational Intelligence (SCI) 109, 455–471 (2008)
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both classes). More, Provost [17] claims that up-sampling does not add any
information whereas down-sampling results in removing information. These
facts give a motivation for looking for new approaches dealing more efficiently
with recognition of the imbalanced data sets.

In this paper we propose an intuitionistic fuzzy approach to the problem of
classification of imbalanced and overlapping classes. We consider a two–class
classification problem (legal and illegal class).

The proposed method using A-IFSs has its roots in the fuzzy set approach
given by Baldwin et al. [9]. In that approach the classes are represented by
fuzzy sets. The fuzzy sets are generated from the relative frequency distri-
butions representing the data points used as examples of the classes [9]. In
the process of generating fuzzy sets a mass assignment based approach is
adopted (Baldwin et al. [6, 9]). For the obtained model (fuzzy sets describing
the classes), using a chosen classification rule, a testing phase is performed to
assess the performance of the proposed method.

The approach proposed in this paper is similar to the above one in the
sense of the same steps we perform. The main difference lies in using A-IFSs
for the representation of classes, and next – in exploiting the structure of
A-IFSs to obtain a classifier better recognizing a smaller class.

The crucial point of the method is in representing the classes by A-IFSs
(first, training phase). The A-IFSs are generated from the relative frequency
distributions representing the data points used as examples of the classes.
The A-IFSs are obtained according to the procedure given by Szmidt and
Baldwin [21]. Having in mind recognition of the smaller class as good as pos-
sible we use the information about the hesitation margins making it possible
to improve the results of data classification in the (second) testing phase (cf.
Sects. 2 and 5.2). The obtained results in the testing phase were examined
not only in the sense of general error/accuracy but also with using confusion
matrices making possible to explore detailed behaviour of the classifiers.

The material in this paper is organized as follows: In Sect. 2 a brief in-
troduction to A-IFSs is given. In Sect. 3 the mechanism converting relative
frequency distributions into A-IFSs is presented. In Sect. 4 the models of the
classifier errors are reminded. In Sect. 5 a simple classification problem is con-
sidered – in Sect. 5.1: using a fuzzy classifier, in Sect. 5.2: using an intuitionistic
fuzzy classifier. We compare the performance of both classifiers analyzing the
errors. In Sect. 6 a benchmark problem is analysed. In Sect. 7 we end with
some conclusions.

2 Atanassov’s Intuitionistic Fuzzy Sets

One of the possible generalizations of a fuzzy set in X [27], given by

A
′
= {<x, µA′ (x)>|x ∈ X} (1)

where µA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an

Atanassov’s intuitionistic fuzzy set [1–3] A given by
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A = {<x, µA(x), νA(x)>|x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of
non-membership of x ∈ A, respectively.

Obviously, each fuzzy set may be represented by the following A-IFS

A = {<x, µA′ (x), 1− µA′ (x)>|x ∈ X} (4)

For each A-IFS in X, we will call

πA(x) = 1− µA(x)− νA(x) (5)

an intuitionistic fuzzy index (or a hesitation margin) of x ∈ A. It expresses a
lack of knowledge of whether x belongs to A or not (cf. [3]). For each x ∈ X
0<πA(x)<1.

The application of A-IFSs instead of fuzzy sets means the introduction
of another degree of freedom into a set description. Such a generalization of
fuzzy sets gives us an additional possibility to represent imperfect knowledge
what leads to describing many real problems in a more adequate way. We refer
an interested reader to Szmidt and Kacprzyk [22, 23] where the applications
of A-IFSs to group decision making, negotiations and other situations are
presented.

3 Converting Relative Frequency Distributions
into Atanassov’s Intuitionistic Fuzzy Sets

The mechanism of converting a relative frequency distribution into an A-IFS is
mediated by the relation of an A-IFS to the mass assignment theory. Detailed
description is given by Szmidt and Baldwin [19–21].

The theory of mass assignment has been developed by Baldwin [5–7] to
provide a formal framework for manipulating both probabilistic and fuzzy
uncertainty.

A fuzzy set can be converted into a mass assignment [4]. This mass as-
signment represents a family of probability distributions.

Definition 1. (Mass Assignment) Let A
′
be a fuzzy subset of a finite uni-

verse Ω such that the range of the membership function of A
′
, is {µ1, ..., µn}

where µi > µi+1. Then the mass assignment of A
′
denoted mA′ , is a proba-

bility distribution on 2Ω satisfying

mA′ (Fi) = µi − µi+1 (6)
where: (7)

Fi = {x ∈ Ω|µ(x) ≥ µi} for i = 1, ..., n
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Table 1. Equality of the parameters for Baldwin’s voting model and A-IFS voting
model

Baldwin’s A-IFS
voting model voting model

Voting in favour n µ
Voting against 1 − p ν
Abstaining p − n π

The sets F1, ..., Fn are called the focal elements of mA′ . The detailed intro-
duction to mass assignment theory is given by Baldwin et al. [6].

In Table 1 equality of parameters from Baldwin’s voting model and from
A-IFS voting model is presented [19, 20]. The equivalence occurs under the
condition that each value of membership/non-membership of A-IFS occurs
with the same probability for each xi (for a deeper discussion of the problem
we refer an interested reader to [19, 20]). In other words both Support Pairs
(mass assignment theory) and A-IFS models give the same intervals containing
the probability of the fact being true, and the difference between the upper
and lower values of intervals is a measure of the uncertainty associated with
the fact [19,20].

The mass assignment structure is best used to represent knowledge that
is statistically based such that the values can be measured, even if the mea-
surements themselves are approximate or uncertain [8].

Definition 2. (Least Prejudiced Distribution) [6]
For A′ a fuzzy subset of a finite universe Ω such that A′ is normalized, the
least prejudiced distribution of A′, denoted lpA′ , is a probability distribution
on Ω given by

lpA′ (x) =
∑

Fi:x∈Fi

mA′ (Fi)
|Fi|

(8)

Theorem 1. [9] Let P be a probability distribution on a finite universe Ω

taking as a range of values {p1, ..., pn} where 0 ≤ pi+1 < pi ≤ 1 and
n∑

i=1

pi = 1.

Then P is the least prejudiced distribution of a fuzzy set A′ if and only if A′

has a mass assignment given by

mA′ (Fi) = µi − µi+1 for i = 1, ..., n− 1
mA′ (Fn) = µn

where
Fi = {x ∈ Ω|P (x) ≥ pi}

µi = |Fi|pi +
n∑

j=i+1

(|Fj | − |Fj+1|)pj

Proof (see [9]) ��
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It is worth mentioning that the above algorithm is identical to the bijection
method proposed by Dubois and Prade [10] although the motivation in [9]
is quite different. Also Yager [25] considered a similar approach to mapping
between probability and possibility. A further justification for the transfor-
mation was given by Yamada [26].

In other words, Theorem 1 gives a general procedure converting a relative
frequency distribution into a fuzzy set, i.e. gives us means for generating fuzzy
sets from data.

But Theorem 1 gives also an idea how to convert the relative frequency
distributions into A-IFSs.

When discussing A-IFSs we consider memberships and independently
given non-memberships so Theorem 1 gives only a part of the description we
look for. To receive the full description of an A-IFS (with independently given
memberships and non-memberships), it is necessary to repeat the procedure
as in Theorem 1 two times. In result we obtain two fuzzy sets. To interpret
them properly in terms of A-IFSs we recall first a semantic for membership
functions.

Dubois and Prade [11] have explored three main semantics for membership
functions – depending on the particular applications. Here we apply the inter-
pretation proposed by Zadeh [28] when he introduced the possibility theory.
Membership µ(x) is there the degree of possibility that a parameter x has
value µ.

In effect of repeating the procedure as in Theorem 1 two times (first –
for data representing memberships, second – for data representing non-
memberships), and taking into account interpretation that the obtained values
are the degrees of possibility we receive the following results.

– First time we perform the steps from Theorem 1 for the relative frequen-
cies connected to memberships. In effect we obtain (fuzzy) possibilities
Pos+(x)= µ(x) + π(x) that x has value Pos+.
Pos+(x) (left side of the above equation) mean the values of a membership
function for a fuzzy set (possibilities). In terms of A-IFSs (right side of
the above equation) these possibilities are equal to possible (maximal)
memberships of an A-IFS, i.e. µ(x)+π(x), where µ(x) – the values of the
membership function for an A-IFS, and µ(x) ∈ [µ(x), µ(x) + π(x)].

– Second time we perform the steps from Theorem 1 for the (independently
given) relative frequencies connected to non-memberships. In effect we
obtain (fuzzy) possibilities Pos−(x)= ν(x) + π(x) that x has not value
Pos−.
Pos−(x) (left side of the above equation) mean the values of a membership
function for another (than in the previous step) fuzzy set (possibilities).
In terms of A-IFSs (right side of the above equation) these possibilities
are equal to possible (maximal) non-memberships, i.e. ν(x)+π(x), where
ν(x) – the values of the non-membership function for an A-IFS, and ν(x) ∈
[ν(x), ν(x) + π(x)].
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The algorithm of assigning the parameters of A-IFSs:

1. From Theorem 1 we calculate the values of the left sides of the equations:

Pos+(x) = µ(x) + π(x) (9)

Pos−(x) = ν(x) + π(x) (10)

2. From (9)–(10), and taking into account that µ(x) + ν(x)+π(x) = 1, we
obtain the values π(x)

Pos+(x) + Pos−(x) = µ(x) + π(x) + ν(x) + π(x) = 1 + π(x) (11)

π(x) = Pos+(x) + Pos−(x)− 1 (12)

3. Having the values π(x), from (9) and (10) we obtain for each x: µ(x),
and ν(x).

This way, starting from relative frequency distributions, and using
Theorem 1, we receive full description of an A-IFS.

4 The Models of a Classifier Error

Traditionally accuracy of a classifier is measured as the percentage of instances
that are correctly classified, and error is measured as the percentage of in-
correctly classified instances (unseen data). Accuracy and error are simple to
calculate and understand but it is well known (e.g., [18]) that in a case of im-
balanced classes (typically having highly non-uniform error cost eg., medical
diagnosis, fraud detection), a smaller class, being a class of primary interest
is poorly recognized. To see this, consider a case with 96% of the instances
belonging to the bigger (illegal) class, and 4% of the instances belonging to
the smaller (legal) class – the class we are interested in. Accuracy of a classi-
fier which recognizes all instances as illegal is equal to 96%. Although it looks
high, the classifier would be useless because it totally fails to recognize the
smaller class.

To avoid such situations, other measures, like TPR and FPR are also
considered (cf. Table 2) while assessing a classifier dealing with imbalanced
classes.

4.1 Confusion Matrix

The confusion matrix (Table 2) is often used to assess a two–class classifier.
The meaning of the symbols is
a – the number of correctly classified legal points,
b – the number of correctly classified illegal points,
c – the number of incorrectly classified legal points,
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Table 2. The confusion matrix

Tested Tested
legal illegal

Actual legal a b
Actual illegal c d

d – the number of incorrectly classified illegal points,

TPR =
legalls correctly classified

total legalls
=

a

a + b
(13)

FPR =
illegals incorrectly classified

total illegals
=

d

c + d
(14)

5 Classifiers for the Imbalanced Classes

The data set D used to demonstrate the problems with imbalanced data, and
to present and compare two classifiers (a fuzzy classifier and an intuitionistic
fuzzy classifier) is presented in Fig. 1. The task lies in classification of the
points belonging to the ellipse (Fig. 1).

The data set D consists of 288 data points from a regular grid with
universes ΩX and ΩY being [−1.5, 1.5]. Legal points lie within the ellipse

illegal

legal

1.5

−1.5

-1.5
−1.5 1.50

0
0

Y

X

Fig. 1. Ellipse inequality in Cartesian space. Points inside the ellipse are classified
as legal, points outside the ellipse are classified as illegal



www.manaraa.com

462 E. Szmidt and M. Kukier

y2 + 2x2<1, illegal points outside the ellipse. We divide D into two equal
parts: D1 – the training set, and D2 – the testing set. Each data sample
consists of a triple <X,Y,CLASS>; class is LEGAL when the point (X,Y )
satisfies the ellipse inequality and ILLEGAL otherwise.

5.1 Classification via Fuzzy Sets

In the ellipse problem we have two single attribute input features: X and Y .
We formed Cartesian granule fuzzy sets corresponding to the legal and illegal
classes over the Cartesian product space of the partitions PX and PY . The
number of fuzzy sets to form the fuzzy partition of each universe is a separate
problem. We verified several possibilities and decided for ten fuzzy sets over
each universe – for more fuzzy sets no significant gain in terms of model
prediction was made. We divided the training database D1 into two smaller
databases according to the output classification. Then we took the points
corresponding to the LEGAL/ILLEGAL class and formed a Cartesian granule
fuzzy set for the LEGAL/ILLEGAL class.

In order to generate the body fuzzy sets we partitioned X and Y universe
with the following fuzzy sets

pX1 = pY1 = [−1.5 : 1,−1.167 : 0]
pX2 = pY2 = [−1.5 : 0,−1.167 : 1,−0.833 : 0]
pX3 = pY3 = [−1.167 : 0,−0.833 : 1,−0.5 : 0]
pX4 = pY4 = [−0.833 : 0,−0.5 : 1,−0.167 : 0]
pX5 = pY5 = [−0.5 : 0,−0.167 : 1, 0.167 : 0]
pX6 = pY6 = [−0.167 : 0, 0.167 : 1, 0.5 : 0]
pX7 = pY7 = [0.167 : 0, 0.5 : 1, 0.833 : 0]
pX8 = pY8 = [0.5 : 0, 0.833 : 1, 1.167 : 0]
pX9 = pY9 = [0.833 : 0, 1.167 : 1, 1.5 : 0]

pX10 = pY10 = [1.167 : 0, 1.5 : 1]

Next, from D1 (training 144 triples) we evaluated the probability distributions
on the above fuzzy partition, taking

PX(pi|legal) =
∑

x∈D1:CLASS=legal

µpi
(X)/|x ∈ D1|CLASS = legal|

PX(pi|illegal) =
∑

x∈D1:CLASS=illegal

µpi
(X)/|x ∈ D1|CLASS = illegal|

PY (pi|legal) =
∑

y∈D1:CLASS=legal

µpi
(Y )/|y ∈ D1|CLASS = legal|

PY (pi|illegal) =
∑

y∈D1:CLASS=illegal

µpi
(Y )/|y ∈ D1|CLASS = illegal|
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Table 3. Model of the data – Probability distributions on the fuzzy partition

Interval

1 2 3 4 5 6 7 8 9 10

PX(pi|legal) 0 0 0.0341 0.1648 0.3011 0.3011 0.1648 0.0341 0 0
PX(pi|illegal) 0.1266 0.1266 0.1169 0.0796 0.0503 0.0503 0.0796 0.1169 0.1266 0.1266
PY (pi|legal) 0 0.0227 0.1080 0.1477 0.2216 0.2216 0.1477 0.1080 0.0227 0
PY (pi|illegal) 0.1266 0.1201 0.0958 0.0844 0.0731 0.0731 0.0844 0.0958 0.1201 0.1266

The results (the probability distributions on ΩX and ΩY ) are given in Table 3.
Then Theorem 1 was used to find the following approximation of the fuzzy
sets (for data D1)

– Legal data ΩX

CLASS(legalX) : FX1/0 + FX2/0 + FX3/0.204545455
+ FX4/0.727272727 + FX5/1 + FX6/1
+ FX7/0.727272727 + FX8/0.204545455
+ FX9/0 + FX10/0 (15)

– Illegal data ΩX

CLASS(illegalX) : FX1/1 + FX2/1 + FX3/0.961038961
+ FX4/0.737012987 + FX5/0.503246753
+ FX6/0.503246753 + FX7/0.737012987
+ FX8/0.961038961 + FX9/1 + FX10/1 (16)

– Legal data ΩY

CLASS(legalY ) : FY1/0 + FY2/0.181818182 + FY3/0.693181818
+ FY4/0.852272727 + FY5/1 + FX6/1
+ FY7/0.852272727 + FY8/0.693181818
+ FY9/0.181818182 + FY10/0 (17)

– Illegal data ΩY

CLASS(illegalY ) : FY1/1 + FY2/0.987012987 + FY3/0.88961039
+ FY4/0.821428571 + FY5/0.730519481
+ FX6/0.730519481 + FY7/0.821428571
+ FY8/0.88961039 + FY9/0.987012987 + FY10/1 (18)

Having the above fuzzy sets describing legal and illegal data in X and in Y
we tested the model (on D2 – another 144 triplets). We used a very simple
classification rule – assigning a data point (X,Y ) to the class to which it
belongs most (highest membership values for both universes).
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Table 4. The confusion matrix for fuzzy set classifier

Tested Tested
legal illegal

Actual legal 16 16
Actual illegal 112 0

Table 5. Fuzzy classifier: tested results – confusion matrices for each of ten regions

Actual Tested results
classes 1 2 3 4 5 6 7 8 9 10

↓ + – + – + – + – + – + – + – + – + – + –

X: + 0 0 0 0 0 2 4 4 12 10 12 10 4 4 0 2 0 0 0 0
X: – 24 0 36 0 22 0 16 0 14 0 14 0 16 0 22 0 36 0 24 0

Y: + 0 0 0 2 0 6 4 4 12 4 12 4 4 4 0 6 0 2 0 0
Y: – 24 0 34 0 18 0 16 0 20 0 20 0 16 0 18 0 34 0 24 0

+ Means: legal; – means: illegal

Table 6. Fuzzy classifier: errors for tested results in each of ten regions

Tested results
1 2 3 4 5 6 7 8 9 10

X: accuracy 1 1 0.92 0.83 0.72 0.72 0.83 0.92 1 1
X: TPR 0 0 0 0.5 0.55 0.55 0.5 0 0 0
X: FPR 0 0 0 0 0 0 0 0 0 0
Y: accuracy 1 0.94 0.75 0.83 0.89 0.89 0.83 0.75 0.94 1
Y: TPR 0 0 0 0.5 0.75 0.75 0.5 0 0 0
Y: FPR 0 0 0 0 0 0 0 0 0 0

(X,Y ) ∈ legal
⇔ legal = arg max[µCLASSX

(X,Y );CLASSX ∈ {legal, illegal}]
and

⇔ legal = arg max[µCLASSY
(X,Y );CLASSY ∈ {legal, illegal}] (19)

The accuracy on the test data D2 using (19) was 88.9%. We also assessed the
results using the confusion matrix – Table 4. It turned out that the classifier
had difficulties with recognition of the legal (smaller) class. Only 16, i.e. the
half of the tested points belonging to the legal class were correctly classified
(TPR = 0.5). On the other hand, all 112 points belonging to the bigger –
illegal class were correctly classified (FPR = 0) (Tables 5 and 6).

5.2 Classification via Atanassov’s Intuitionistic Fuzzy Sets

We solved the same problem but with additional possibilities giving by A-IFSs.
In Sect. 3 it was shown how to convert relative frequencies to A-IFSs (and
the meaning of all the parameters was discussed). So first we converted our
training data set D1 obtaining A-IFSs describing legal and illegal classes in
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Table 7. Model of the data – intuitionistic fuzzy description in each of ten regions

Interval

1 2 3 4 5 6 7 8 9 10

X=legal: Possibility: 0 0 0.2045 0.7273 1 1 0.7273 0.2045 0 0
X=legal: hesitation 0 0 0.1656 0.4643 0.5033 0.5033 0.4643 0.1656 0 0

margin
X=legal:membership 0 0 0.2045 0.7273 1 1 0.7273 0.2045 0 0
X=illegal: Possibility: 1 1 0.9610 0.7370 0.5033 0.5033 0.7370 0.9610 1 1
X=illegal: hesitation 0 0 0.1656 0.4643 0.5033 0.5033 0.4643 0.1656 0 0

margin

X=illegal:membership ↓ 1 1 0.7955 0.2727 2.22E-16 2.22E-16 0.2727 0.7955 1 1
Y=legal: Possibility: 0 0.1818 0.6932 0.8523 1 1 0.8523 0.6932 0.1818 0
Y=legal: hesitation 0 0.1688 0.5828 0.6737 0.7305 0.7305 0.6737 0.5828 0.1688 0

margin
Y=legal:membership 0 0.1818 0.6932 0.8523 1 1 0.8523 0.6932 0.1818 0
Y=illegal: Possibility: 1 0.9870 0.8896 0.8214 0.7305 0.7305 0.8214 0.8896 0.9870 1
Y=illegal: hesitation 0 0.1688 0.5828 0.6737 0.7305 0.7305 0.6737 0.5828 0.1688 0

margin
Y=illegal:membership ↓ 1 0.8182 0.3068 0.1477 1.11E-16 1.11E-16 0.1477 0.3068 0.8182 1

X and in Y – Table 7. We exploited the information about hesitation margins
(making use of the fact that legal and illegal classes overlap). Taking into
account that hesitation margins assign (the width of the) intervals where the
unknown values of memberships lies, we applied in the model the following
values:

– Maximal possible values of the memberships describing the legal class (see
Table 7 – the values of memberships for the legal class both in ΩX and
ΩY are given in bolds).

– Minimal possible values of the memberships describing the illegal class
(see Table 7 – the minimal possible values of the memberships for illegal
class were obtained, both in ΩX and ΩY , by subtracting the hesitation
margins from the maximal possible values of the memberships for the
illegal class – this operation is signed by: ↓ – Table 7).

This way in the training phase we formed Cartesian granule A-IFSs cor-
responding to the legal and illegal classes in such a way that the legal class
should be seen as good as possible.

The results for tested data D2 (the same rule (19) was used) are the fol-
lowing – the accuracy is equal to 94.4% – better result than those obtained
when applying fuzzy set approach (88.9%). But the most interesting is the dif-
ference in separate classification of legal and illegal classes by both classifiers.
General results are in Tables 4 and 8. The smaller class is better classified –
28 legal elements were correctly classified instead of 16 for fuzzy classifier.
In effect TPR is bigger (0.875 instead of 0.5). Of course, in effect FPR is a
little bigger (0.036 instead of 0) as the result of decreasing memberships for
illegal class (4 incorrectly classified elements instead of 0 for fuzzy classifier).
But now the smaller class is better classified, and the general accuracy is also
better.
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Table 8. The confusion matrix for intuitionistic fuzzy classifier

Tested Tested
legal illegal

Actual legal 28 4

Actual illegal 108 4

Table 9. Intuitionistic Fuzzy classifier: tested results – confusion matrices for each
of ten regions

Actual Tested results
classes 1 2 3 4 5 6 7 8 9 10

↓ + – + – + – + – + – + – + – + – + – + –

X: + 0 0 0 0 0 2 6 2 22 0 22 0 6 2 0 2 0 0 0 0
X: – 24 0 36 0 22 0 14 2 12 2 12 2 14 2 22 0 36 0 24 0

Y: + 0 0 2 0 6 0 8 0 12 4 12 4 8 0 6 0 2 0 0 0
Y: – 24 0 32 2 16 2 16 0 20 0 20 0 16 0 16 2 32 2 24 0

+ means: legal; – means: illegal

Table 10. Intuitionistic fuzzy classifier: errors for tested results in each of ten regions

Tested results
1 2 3 4 5 6 7 8 9 10

X: accuracy 1 1 0.92 0.83 0.94 0.94 0.83 0.92 1 1
X: TPR 0 0 0 0.75 1 1 0.75 0 0 0
X: FPR 0 0 0 0.13 0.14 0.14 0.13 0 0 0
Y: accuracy 1 0.94 0.92 1 0.89 0.89 1 0.92 0.94 1
Y: TPR 0 1 1 1 0.75 0.75 1 1 1 0
Y: FPR 0 0.059 0.11 0 0 0 0 0.11 0.059 0

It is also interesting to compare the results in separate intervals for both
universes – Tables 5, 6 and 9, 10 for the fuzzy classifier and intuitionisticf
fuzzy classifier respectively. The misclassified data is located for the most
part around the regions of high curvature or high rates of change over both
universes ΩX and ΩY .

In intervals 4 and 7 only half of the points were classified correctly – ΩX :
TPR = 0.5 for fuzzy classifier, whereas for intuitionistic fuzzy classifier for
the same intervals TPR = 0.75. Even better performance was obtained in
intervals 5 and 6: TPR = 0.55 for fuzzy classifier, and TPR = 1 for intu-
itionistic fuzzy classifier (all points from the smaller legal class were properly
classified). Only in intervals 3 and 8 TPR = 0 for both classifiers which were
not able to see two points from the legal class (on the other side, accuracy of
both classifiers in the intervals is the highest: 0.92).

For ΩY fuzzy classifier does not see legal class at all in intervals 2, 3 and
8, 9 – TPR = 0 whereas intuitionistic fuzzy classifier correctly classified all
the points – TPR = 1. But for intervals 5 and 6 (for which we observed the
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best improvement by intuitionistic fuzzy classifier in ΩX) we do not observe
any changes – TPR = 0.75 and accuracy is equal to 0.89 for both classifiers.

As it has been already mentioned, we pay for the improved classifica-
tion of the smaller legal class in the sense of increasing the values of FPR.
But the changes are small and they have not influence at all on the gen-
eral error/accuracy of the classifier. Opposite – the general accuracy of the
intuitionistic fuzzy classifier is bigger.

But as the structure of the data considered in the ellipse example was spe-
cific, in the next section we examine the proposed methods using a benchmark
data set.

6 Results for a Benchmark Data

We examined the performance of the discussed in Sect. 5 classifiers using a
benchmark data, namely, Wine data set from the UCI ML Repository [24].
The classification was made on the basis of 13 attributes.

To illustrate the performance of the considered classifiers designed for im-
balanced classes, we solved a two-class classification problem – class by class
was treated as legal class (minority class) and the rest 2 classes as one (major-
ity) illegal classes. In Table 11 there are listed the natural class distributions
of the data sets expressed as the minority class percentage of the whole data
set. For example, if Wine 1 (59 instances) is the minority class, the remaining
two classes (71 + 48 = 119 instances) are treated as one majority class. Three
separate experiments were performed – each one for classifying one type of
wine. In each experiment (for a chosen class to be classified as legal) the data-
base consisting of 178 instances was split into a training set and test set in
such a way that the instances of a legal (minor) class, and illegal (major class
consisting of the sum of the rest classes) were divided equally between D1 and
D2 (every second instance was assigned to D1; the remaining instances were
assigned to D2). Asymmetric triangular fuzzy partitioning was then defined
for each attribute (Baldwin, and Karale, 2003), i.e., the training data set was
divided so that each fuzzy partition had almost the same number of data (in-
stances) associated with it. Next, for each case, the fuzzy models of data (for
legal and illegal classes) were constructed (as described in Sect. 5.1 – sepa-
rately for each attribute. In effect, for each experiment (each type of wine)

Table 11. Data set used in our experiment ( [24])

Wine Name size Minority class %

1 Wine 1 59 33
2 Wine 2 71 40
3 Wine 3 48 27
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13 classifiers (for each of 13 attributes) were derived, and next – aggregated.
The following aggregation was used

Agg1 : AggCLASS
1 (e) =

n∑
k=1

wkµk
CLASS(e) (20)

where e – an examined instance from a database,
wk = nk

n∑
k=1

nk

for k = 1, . . . , n is a set of weights for each attribute: nk is the

number of correctly classified training data by k-th attribute.
Knowing the aggregation Agg1, the classification of an examined instance

was done by evaluating

D1(e) = arg max[AggCLASS
1 (e), CLASS ∈ {legal, illegal}] (21)

The described above procedure concerns a fuzzy classifier (legal and illegal
data were given as fuzzy sets). The same procedure was repeated to construct
an intuitionistic fuzzy classifier. The difference was that the data (given orig-
inally in the form of the frequency distributions) were converted (cf. Sect. 3)
into A-IFSs. In effect each examined instance e was described due to the de-
finition of A-IFSs) by a triplet: membership value to a legal (smaller) class,
non-membership value to a legal class (equal to membership value to illegal-
bigger class) and hesitation margin, i.e.

e : (µe, νe, πe) (22)

To enhance the possibility of a proper classification of the instances belonging
to a smaller (legal) class, while training the intuitionistic fuzzy classifier, the
values of the hesitation margins were divided so to “see” better the smaller
class – each instance e (22) was expressed as

e : (µe + απe, νe + (1− α)πe) (23)

where α ∈ (0.5, 1) is a parameter.
The results obtained are given in Table 12. Here we discuss the test results

only. Wine 1 was recognized by the intuitionistic fuzzy classifier (α = 0.7) with
97.75% accuracy, and TPR equal to 0.966 (better than for fuzzy classifier:
92.13%, and 0.793, respectively). More, the better behavior was not achieved
at the price of FPR which in both cases is the same (0.017).

Wine 2 was also recognized with better accuracy (98.88%) by the intu-
itionistic fuzzy classifier (α = 0.7) than for fuzzy classifier (94.38%). TPR for
both classifiers is excellent (equals to 1), but the intuitionistic fuzzy classifier
behaves worse in the sense of FPR which value increases from zero for fuzzy
classifier to 0.015. It is the price paid for increasing the accuracy from 94.38
to 98.88%.

Wine 3 was recognized without any mistakes by both classifiers.
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Table 12. Classification results obtained by a fuzzy classifier and intuitionistic fuzzy
classifier

Fuzzy classifier Intuitionistic Fuzzy classifier
training testing training testing

Accuracy (%) 100 92.13 100 97.75
Wine 1 TPR 1 0.793 1 0.966
α = 0.7 FPR 0 0.017 0 0.017

Accuracy (%) 100 94.38 100 98.88
Wine 2 TPR 1 1 1 1
α = 0.7 FPR 0 0 0 0.015

Accuracy (%) 100 100 100 100
Wine 3 TPR 1 1 1 1
α = 0.5 FPR 0 0 0 0

The results seem very promising. Each kind of wine is seen better (or, at
least, not worse) by the intuitionistic classifier than by the fuzzy classifier.
In other words, the intuitionistic fuzzy classifier better recognizes the smaller
classes.

7 Conclusions

We proposed a simple intuitionistic fuzzy classifier for imbalanced and over-
lapping data. Detailed analysis of the errors has shown that using intuitionistic
fuzzy sets gives better results than the counterpart approach via fuzzy sets.
Better performance of the intuitionistic fuzzy classifier concerns especially
the recognition power of a smaller class. It is strongly connected with the fact
that Atanassov’s intuitionistic fuzzy sets, being a generalization of fuzzy sets,
make use of more parameters (memberships, non-memberships, and hesitation
margins) so the resulting models are more reliable.

In some cases we have noticed, besides the improvement of the better
recognition power of the smaller class, also the improvement of the accuracy
of the intuitionistic fuzzy classifier in comparison with a fuzzy classifier. We
examine further benchmark data sets so to look for the connection (if any)
between the the distributions of the data sets and the behavior of the proposed
classifier.
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Summary. An Integrated Data Management System is required for representing
and managing indicative information from multiple sources describing the state of
an enterprise. In such environments, information may be partially known because
the related information from the real world corresponds to a set of possible values
including the unknown. Here, we present a way to replace unknown values using
background knowledge of data that is often available arising from a concept hierar-
chy, as integrity constraints, from database integration, or from knowledge possessed
by domain experts. We present and examine the case of H-IFS to represent support
contained in subsets of the domain as a candidate for replacing unknown values
mostly referred in the literature as NULL values.

1 Introduction

Background knowledge of data is often available, arising from a concept
hierarchy, as integrity constraints, from database integration, or from knowl-
edge possessed by domain experts. Frequently integrated DBMSs contain in-
complete data which we may represent by using H-IFS to declare support
contained in subsets of the domain. These subsets may be represented in
the database as partial values, which are derived from background knowl-
edge using conceptual modelling to re-engineer the integrated DBMS. For
example, we may know that the value of the attribute JOB-DESCRIPTION
is unknown for the tuple relating to employee Natalie but also know from
the attribute salary that Natalie receives an estimated salary in the range of
AC5K ∼ Salary25K. A logic program, using a declarative language can then
derive the result that Natalie is a “Junior- Staff”, which we input to the at-
tribute JOB-DESCRIPTION of tuple Natalie in the re-engineered database.
In such a manner we may use the knowledge base to replace much of the
unknown in the integrated database environment.

Generalised relations have been proposed to provide ways of storing and
retrieving data. Data may be imprecise, hence we are not certain about the
B. Kolev et al.: Representation of Value Imperfection with the Aid of Background Knowledge:

H-IFS, Studies in Computational Intelligence (SCI) 109, 473–492 (2008)
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specific value of an attribute but only that it takes a value which is a member
of a set of possible values. An extended relational model for assigning data to
sets has been proposed by [1]. This approach may be used either to answer
queries for decision making or for the extraction of patterns and knowledge
discovery from relational databases. It is therefore important that appropriate
functionality is provided for database systems to handle such information.

A model, which is based on partial values [2], has been proposed to handle
imprecise data. Partial values may be thought of as a generalisation of null
values where, rather than not knowing anything about a particular attribute
value, we may identify the attribute as a set of possible values. A partial value
is therefore a set such that exactly one of the values in the set is the true value.

We review the different types of NULL values and then we focus is on
providing an integrated DBMS environment that will enable us to:

• Reconcile unknown information with the aid of background knowledge.
We examine the appropriateness of the H-IFS as a form of Background
knowledge for replacing unknown attribute values

• Utilise constraints as part of the integrated DBMS metadata to improve
query execution

• Query imprecise information a part of integrated DBMS environment that
may entail more than one sources of information

2 Review of NULL Values

A null value represents an unknown attribute value, is a value that is known to
exist, but the actual value is unknown. The unknown value is assumed to be a
valid attribute value, that is, some value in the domain of that attribute.
This is a very common kind of ignorant information. For example, in an
employee database, while everyone must have a surname, Alex’s surname may
be recorded as unknown. The unknown value indicates that Alex has a name,
but we do not know her name. An unknown value has various names in the
literature including unknown null [3], missing null [4], and existential null [5].

The meaning of a fact, F , with an unknown attribute value over an at-
tribute domain of cardinality N is a multiset with N members; each member is
a set containing an F instance with the unknown value being replaced by a dif-
ferent value from the attribute domain. For example, assume f = {IBM(⊥)}
where (⊥ represents an unknown value over a domain {20, 22} with respect
to IBM’s share-price), then the meaning of f is

f = {{IBM(20)}, {IBM(22)}}

This corresponds to the notion that a fact with an unknown value is incom-
plete with respect to a fact where that unknown value is no longer unknown,
but is now known to be a specific value (i.e. f1 = {{IBM(20)}).
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Another generalization of an unknown fact is a disjunctive fact [6], so
known as indefinite information [7]. A disjunction is a logical or applied to
fact instances. Let F be an inclusive disjunctive fact with N disjuncts. The
meaning of F is given by a multiset with N members; each member is a
set containing one disjunct. For example, the share price of IBM may be
£20 or £22. (i.e. “IBM (20), IBM (22)”). The disjunction is exclusive [8] or
inclusive [9]. If it is an exclusive disjunction, one and only one disjunct is
true. The meaning of an exclusive disjunctive fact is the same as that of an
imprecise value. Let f = {{IBM(20)}, {IBM(22)}} be an exclusive disjunctive
then the meaning of f is f = {IBM(20)} ∨ {IBM(22)}.

The meaning of an inclusive disjunctive fact is somewhat different than
that of its exclusive complement, at least one alternative may be true. Let F
be an inclusive disjunctive fact with N disjuncts. The meaning of F is given
by a multiset with 2N − 1 members; each member is a unique subset of dis-
juncts. For example, assume, the inclusive disjunct f = {IBM(20){IBM(22)}
then the meaning of f , is f = {{IBM(20)}, {IBM(22)}, {IBM(20), IBM(22)}},
excluding the fact, {{IBM(⊥)}. The empty (⊥) attribute represents the situa-
tion where a fact instance exists, but does not have a particular attribute-label
value.

A maybe value is an attribute-label value which might or might not exist
[10]. If it does exist, the value is known. A maybe tuple or fact-instance is
similar to a maybe value, but the entire tuple might not be part of the relation.
Maybe tuples are produced when one disjunct of an inclusive disjunctive fact-
instance is found to be true.

A combination of inclusive disjunctive fact instance and a maybe fact
instance can determine the semantics of open information or nulls [11]. The
denotation of an open null is exact to inclusive disjunctive information with
the addition of the empty set as a possible value. That is the attribute-lable
value may not exist, could be exactly one value, or could be many values.
For example, in the shares database an open value could be used to present
IBM share prices. This value means that IBM share price possibly had a past
record, (this could be the first appearance in the market); IBM share price may
be one or many. The open value covers all this possibilities. A generalization of
open information is possible information [12] (this differs from our use of the
term “possible”). Possible information is an attribute value whose existence
is undetermined, but if it does exist, it could be multiple values from a subset
of the attribute domain.

A no information value is a combination of an open value and an unknown
value [13]. The no information value restricts an open value to resemble an
unknown value. A, no information value might not exist, but if it does, then
it is a single value, which is unknown, rather than possibly many values. The
meaning of a no information value is similar to that of an unknown value with
the inclusion of the addition of the empty set as a possible value.
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Unknown, partially known, open, no information, and maybe null values
are different interpretations of a null value. There are other null value inter-
pretations, but none of these is a kind of well cognisant information.

An inapplicable or does not exist null is a very common null value. An in-
applicable null, appearing as an attribute value, means that an attribute does
not have a value [14]. An inapplicable value neither contains nor represents
any ignorance; it is known that the attribute value does not exist. Inapplicable
values indicate that the schema (usually for reasons of efficiency or clarity)
does not adequately model the data. The relation containing the inapplicable
value can always be decomposed into an equivalent set of relations that do
not contain it. Hence the presence of inapplicable values indicates inadequa-
cies in the schema, but does not imply that information is being incompletely
encoded.

Open nulls is the main representative of the possible-unweighted–
unrestricted branch. Universal nulls may also be classified under this branch
assuming the OWA semantics. Inclusive disjunctive information, possible
information and maybe tuples or values are indicative representatives of the
possible-unweighted-restricted school.

In [15] five different types of nulls are suggested. The labels and semantics
of them are defined as follows. Let V be a function, which takes a label and
returns a set of possible values that the label may have.

Intuitively, V(Ex-mar) = D says that the actual value of an existential
marker can be any member of the domain D. Likewise, V(Ma-mar) = D∪{⊥}
says that the actual value of a maybe marker can be either any member of D,
or the symbol ⊥, denoting a non-existent value. Similarly, V (Par-mar(V s)) =
Vs says that the actual value of a partial null marker of the form pa mar (Vs)
lies in the set Vs, a subset of the domain D.

An important issue is the use of ⊥, which denotes that an attribute is
inapplicable. However such an interpretation of the unknown information,
is not consistent with the principles of conceptual modelling. Assuming the
sample fact spouse, the individual, Tony, is a bachelor and hence, the wife
field is inapplicable to him, ⊥. Conceptually the issue can be resolved with
the use of the subtypes (e.g. married, unmarried) as part of the entity class
Person. A subtype is introduced only when there is at least one role recorded
for that subtype. The conceptual treatment of null will permit us to reduce
the table in Fig. 1 using only two types of null markers (Fig. 2).

Label (X) V(X)
Ex-mar D
Ma-mar D ∪ {⊥}
Pl-mar {⊥}
Par-mar  (Vs) Vs

Pm-mar  (Vs) Vs ∪ {⊥}

Fig. 1. Types of NULL and their semantics
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Label (X) V(X)
V-mar (V)
P-mar  (Vs) {Vs}

{V}

Π-mar  (D-Vs) {D –Vs}

Fig. 2. The reduced set of NULL values

In the general case the algebraic issue under the use of subtypes is whether
the population of the subtypes in relationship to the super type is:

• Total and disjoint : Populations are mutually exclusive and collectively
exhaustive.

• Non-total and disjoint : Populations are mutually exclusive but not exhaus-
tive.

• Total and overlapping : Common members between subtypes and collec-
tively exhaustive, in relationship to super type.

• Non-total and overlapping : Common members between subtypes and not
collectively exhaustive, in relationship to super type.

Conclusively it can be said that a null value is often semantically over-
loaded to mean either an unknown value or an inapplicable. For an extensive
coverage of the issues related to the semantic overloading of null values some-
body may further refer to [16].

3 NULL Values and Background Knowledge in DBMS

In a generalised relational database we consider an attribute A and a tuple
ti of a relation R in which n attribute value ti[A] may be a partial value. A
partial value is formally defined as follows.

Definition 3.1. A partial value is determined by a set of possible attribute
values of tuple t of attribute A of which one and only one is the true value.
We denote a partial value by P = [a1, . . . , an] corresponding to a set of P
possible values {a1, . . . , an} of the same domain, in which exactly one of these
values is the true value of. Here, P is the cardinality of {a1, . . . , an} is a subset
of the domain set {a0, . . . , an+1} of attribute A of relation R, and P ≤ n + 1.

Queries may require operations to be performed on partial values; this can
result in a query being answered by means of bags, where the tuples have
partial attribute values [17].

Example 3.1. We consider the attribute JOB DESCRIPTION that has possi-
ble values ‘Research Associate’, ‘Teaching Associate’, ‘Programmer’, ‘Junior
Staff’, and ‘Senior Staff’. Then {‘Junior Staff’, ‘Senior Staff’}, is an example
of a partial value in terms of classical logic. In this case we know only that
the individual is a staff but not whether he or she is a junior staff or a senior
staff.
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Definition 3.2. An Intuitionistic Fuzzy partial value relation R, is a re-
lation based on partial values for domains D1, D2, . . . , Dn of attributes
A1, A2, . . . , An where R ⊆ P1xP2 x x Pn and Pi is the set of all the partial
values on power set of domain Di. A pruned value of attribute Ai of the
relation R corresponds then to a H-IFS which is a subset of the domain Di.
An example of a partial value relation is presented in Table 1 below:

Let l be an element defined by a structured domain Di. U(e) is the set
of higher level concepts, i.e. U(e) = {n|n ∈ Di ∧ nis an ancestor of l}, and
L(e) is the set of lower concepts L(e) = {n|n ∈ Di ∧ n is a descendent of l}.
If l is a base concept then L(e) = ©/ and if l is a top level concept, then
U(e) = ©/. Considering the H-IFS F = {Research Associate/<1.0, 0.0>,
Programmer/<0.7, 0.2>, Teaching Associate/<0.4, 0.1>} as part of the Con-
cept Employee in Fig. 3:

U(Programmer/<0.7, 0.2>) = {Technical Staff/<0.7, 0.1>}
L(Programmer/<0.7, 0.2>) = ©/

Rule-1 : If (|U(e)| > 1 ∧ L(e) = ©/), then it is simply declared that a child
or base concept has many parents.

E.g. |U(Programmer/<0.7, 0.2>)| = 3, L(Programmer/<0.7, 0.2>) = ©/,
Therefore a child or base concept acting as a selection predicate can claim
any tuple (parent) containing elements found in U(e), as its ancestor.

Table 1. Generalised Relation Staff with partial values in the form of hierarchical
IFS

Name JOB DESCRIPTION SALARY

Natalie {Research Associate/<1.0,0>} { ∼ Salary25K}
Anna {Programmer/<0.7,0.2>} { ∼ Salary20K}

Employee
<1.0, 0.0>

Technical Staff
<0.7, 0.1>

Programmer
<0.7, 0.2>

Junior Staff
<1.0, 0.0>

Senior Staff
<0.4, 0.3>

Research Associate
<1.0, 0.0>

Teaching Associate
<0.4, 0.1>

Fig. 3. Generalised H-IFS F – concept employee
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Now let us consider the following case where l1 = “Employee” and l2 =
“Programmer” then let B the function that defines the space between l1 ∧ l2.
In this case |B((l1), (l2))| = 2, and > 1

B((l1), (l2)) = U(L(l1) ∧ (l2)) where l1 is a high level concept, l2 is a base
concept are elements defined in a structured domain. If both arguments are
high level concepts or low level concepts then B((l1), (l2)) = ©/.

Rule-2 : If B((l1), (l2) is defined and |B((l1), (l2))| > 1, then it is simply
declared that multiple parents, high level concepts, are receiving a base con-
cept as their own child. Therefore a parent or high level concept acting as a
selection predicate can claim any tuple (child) containing elements found in
(L(l1) ∧ (l2)), as its descendant, but with variants level of certainty.

Background knowledge may be specified as arising from a hierarchical
Intuitionistic Fuzzy hierarchy, as integrity constraints, from the integration of
conflicting databases, or from knowledge selected by domain experts. Using
such information we offer to re-engineer the database by replacing missing,
conflicting or unacceptable data by sets of the attribute domain.

Concept hierarchies have previously been used for attribute-induced
knowledge discovery [18]. However the proposed use of background knowl-
edge in this context is unique.

We assume that original attribute values may be given either as singleton
sets, or subsets of the domain, or as concepts, which correspond to subsets of
an attribute domain. In the last case the values may be defined in terms of
a concept hierarchy. In addition there are rules describing the domain, and
these may be formed in a number of ways: they may take the form of integrity
constraints, where we have certain restrictions on domain values; functional
dependencies and also rules specified by a domain expert.

An example of a concept hierarchy expressed with the aid of H-IFS F =
{Research Associate/<1.0, 0.0>, Programmer/<0.7, 0.2>, Teaching Asso-
ciate/<0.4, 0.1>} with values which are sets given in the generalised relation
staff in Table 1. Here a value for the attribute JOB DESCRIPTION may
be a may be a concept from the concept hierarchy as defined in Fig. 3 (e.g.
{Technical Staff/<0.7, 0.1>}). Then in terms of functional dependencies we
may receive the following information Technical-Staff→∼Salary25K. To this
extent in terms of any declarative query language it can be concluded that
the salary in for a reaching associate or a Programmer must be in the range of
Salary25 K. We can also use this knowledge to approximate the salary for all
instances of Junior Staff in case where no further background knowledge after
estimating firstly the <µ, ν> degrees for the hierarchical concept Employee.
Such a hierarchical concept like employee in Fig. 3 can be defined with the
aid of Intuitionistic fuzzy set over a universe [19, 20] that has a hierarchical
structure, named as H-IFS.
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4 Definition of IFS and H-IFS

4.1 Principles of Intuitionistic Fuzzy Sets – Atanassov’s Sets

Each element of an Intuitionistic fuzzy [21,22] set has degrees of membership
or truth (µ) and non-membership or falsity (ν), which do not sum up to 1.0
thus leaving a degree of hesitation margin (π).

As opposed to the classical definition of a fuzzy set given by A′ =
{<x, µA′(x)>|x ε X} where µA(x) ε [0, 1] is the membership function of the
fuzzy set A′, an Intuitionistic fuzzy set A is given by

A = {<x, µA(x), vA(x)>|x ε X}

where: µA : X → [0, 1] and vA : X → [0, 1] such that 0 < µA(x) + vA(x) < 1
and µA(x) vA(x) ε[0, 1] denote a degree of membership and a degree of non-
membership of x ε A, respectively.

Obviously, each fuzzy set may be represented by the following Intuitionistic
fuzzy set

A = {<x, µ′
A(x), (x), 1− µ′

A(x)>|x ε X}
For each Intuitionistic fuzzy set in X, we will call πA(x) = 1−µA(x)−vA(x)

an Intuitionistic fuzzy index (or a hesitation margin) of x ε A which expresses
a lack of knowledge of whether x belongs to A or not. For each x ε A0 <
πA(x) < 1.

Definition 4.1.1. Let A and B be two fuzzy sets defined on a domain X.
A is included in B (denoted A ⊆ B) if and only if their membership func-
tions and non-membership functions satisfy the condition: (∀χ ∈ X)(µA(x) ≤
µB(x) & νA(x) ≥ νB(x))

Two scalar measures are classically used in classical fuzzy pattern matching
to evaluate the compatibility between an ill- known datum and a flexible query,
known as:

• A possibility degree of matching, Π(Q; D)
• A necessity degree of matching, N(Q/D)

Definition 4.1.2. Let Q and D be two fuzzy sets defined on a domain X and
representing, respectively, a flexible query and an ill-known datum:

• The possibility degree of matching between Q and D, denoted Π(Q;D), is
an “optimistic” degree of overlapping that measures the maximum compat-
ibility between Q and D, and is defined by:

Π(Q/D) = supx ∈ X min(<1− νQ(x),νQ(x)>,<1− νD(x),νD(x)>)

• The necessity degree of matching between Q and D, denoted N(Q;D), is
a “pessimistic” degree of inclusion that estimates the extent to which it is
certain that D is compatible with Q, and is defined by:

N(Q/D) = infx ∈ X max(<µQ(x),1− µQ(x)>,<µD(x),1− µD(x)>)
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4.2 H-IFS

The notion of hierarchical fuzzy set rose from our need to express fuzzy values
in the case where these values are part of taxonomies as for food products or
microorganisms for example.

The definition domains of the hierarchical fuzzy sets that we propose be-
low are subsets of hierarchies composed of elements partially ordered by the
“kind of” relation. An element li is more general than an element lj (denoted
li ∼ lj), if li is a predecessor of lj in the partial order induced by the “kind of”
relation of the hierarchy. An example of such a hierarchy is given in Fig. 1.
A hierarchical fuzzy set is then defined as follows.

Definition 4.2.1. A H-IFS is an Intuitionistic fuzzy set whose definition do-
main is a subset of the elements of a finite hierarchy partially ordered by the
“kind of” ≤ relation.

For example, the fuzzy set M defined as: {Milk <0.8, 0.1>, Whole-Milk
<0.7, 0.1>, Condensed-Milk <0.4, 0.3>} conforms to Definition-3. Their de-
finition domains are subsets of the hierarchy given in Fig. 4.

We can note that no restriction has been imposed concerning the elements
that compose the definition domain of a H-IFS. In particular, the user may
associate a given <µ, ν> with an element li and another degree <µ1, ν1> with
an element lj more specific than li . <µ, ν> ∼ <µ1, ν1> represents a semantic
of restriction for lj compared to li, whereas <µ1, ν1> ∼ <µ, ν> represents
a semantic of reinforcement for lj compared to li. For example, if there is
particular interest in condensed milk because the user studies the properties of
low fat products, but also wants to retrieve complementary information about
other kinds of milk, these preferences can be expressed using, for instance, the
following Intuitionistic fuzzy set: <1, 0>/condensed milk + <0.5, 0.1>/Milk.

Milk
<1.0, 0.0>

Whole milk
<0.7, 0.1>

Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<1.0, 0.0>

Condensed milk
<0.4, 0.3>

Whole pasteurized milk
<1.0, 0.0>

Fig. 4. Common closure of the H-IFSs Q and R
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In this example, the element condensed milk has a greater degree than the
more general element Milk, which corresponds to a semantic of reinforcement
for condensed milk compared to Milk.

4.3 Closure of the H-IFS

We can make two observations concerning the use of H-IFSs:

• Let <1, 0>/condensed milk + <0.5, 0.1>/Milk be an expression of liking
in a query. We can note that this H-IFS implicitly gives information about
elements of the hierarchy other than Condensed milk and Milk. One may
also assume that any kind of condensed milk (i.e. whole condensed milk)
interests the user with <µ, ν>♦<1, 0>.

• Two different H-IFSs on the same hierarchy do not necessarily have the
same definition domain, which means they cannot be compared using
the classic comparison operations of Intuitionistic fuzzy set theory “see
Sect. 4.1”. For example, <1, 0>/condensed milk + <0.5, 0.1>/Milk and
1/Milk + 0.2/Pasteurised milk are defined on two different subsets of the
hierarchy of “Fig. 1” and, thus, are not comparable.

These observations led to the introduction of the concept of closure of a
Intuitionistic hierarchical fuzzy set, which is defined on the whole hierarchy.
Intuitively, in the closure of a H-IFS, the “kind of, ≤” relation is taken into
account by propagating the <µ, ν> associated with an element to its sub-
elements (more specific elements) in the hierarchy. For instance, in a query,
if the user is interested in the element Milk, we consider that all kinds of
Milk—Whole milk, Pasteurised milk, are also of interest. On the opposite,
we consider that the super-elements (more general elements) of Milk in the
hierarch are too broad to be relevant for the user’s query.

Definition 4.3.1. Let F be a H-IFS defined on a subset D of the elements
of a hierarchy L. It degree is denoted as <µ, ν>. The closure of F , denoted
clos(F ), is a H-IFS defined on the whole set of elements of L and its degree
<µ, ν>clos(F ) is defined as follows.

For each element l of L, let SL = {l1, . . . ., ln} be the set of the smallest
super-elements of in D:

• If SL is not empty, <µ, ν>clos(F)(SL) = <max1≤i≤n(µ(Li)),
min1≤i≤n(ν(Li)>else, <µ, ν>clos(F)(SL) = <0,0>

In other words, the closure of a H-IFS F is built according to the following
rules. For each element l1 of L:

• If lI belongs to F, then lI keeps the same degree in the closure of F (case
where SL = {lI}).

• If lI has a unique smallest super-element l1 in F, then the degree associated
with lI is propagated to L in the closure of F, SL = {l1} with l1>lI)
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• If L has several smallest super-elements {l1, . . . ., ln} in F, with different
degrees, a choice has to be made concerning the degree that will be associ-
ated with lI in the closure. The proposition put forward in Definition 4.3.1,
consists of choosing the maximum degree of validity µ and minimum degree
of non validity v associated with {l1, . . . , ln}.

• All the other elements of L, i.e., those that are more general than, or not
comparable with the elements of F, are considered as non-relevant. The
degree <0, 0> is associated with them.

Let us consider once more the H-IFS M defined as: {Milk <0.8, 0.1>,
Whole-Milk <0.7, 0.1>, Condensed- Milk <0.4, 0.3>} which is presented in
Fig. 1.

The case of whole condensed milk is different: The user has associated
the degree <0.8, 0.1> with Milk, but has given a restriction on the more
specific element whole milk (degree <0.7, 0.1>). As whole condensed milk is
a kind of whole milk it inherits the <µ, ν> associated with whole milk, that
is <0.7, 0.1>.

If the H-IFS expresses preferences in a query, the choice of the maximum
allows us not to exclude any possible answers. In real cases, the lack of an-
swers to a query generally makes this choice preferable, because it consists of
enlarging the query rather than restricting it.

If the H-IFS represents an ill formulated concept, the choice of the max-
imum allows us to preserve all the possible values of the datum, but it also
makes the datum less specific. This solution is chosen in order to homogenize
the treatment of queries and data. In a way, it enlarges the query, answer.

4.4 Properties of H-IFS

In Sect. 4.3 we saw that each H-IFS has an associated closure that is defined
on the whole hierarchy.

We focus on the fact that two different H-IFSs, defined on the same hier-
archy, can have the same closure, as in the following example.

Example . TheH-IFSsQ = {Milk<1, 0>,Whole-Milk<0.7, 0.1>, Pasteurised-
milk <1, 0>, Condensed-Milk <0.4, 0.3>} and R = {Milk <1, 0>, Whole-
milk<0.7, 0.1>, Pasteurised-milk <1, 0>, Whole-Pasteurised-milk <1, 0>,
Condensed Milk <0.4, 0.3>} have the same closure, represented Fig. 4 below.

Such H-IFSs form equivalence classes with respect to their closures.

Definition 4.4.1. Two H-IFSs Q and R, defined on the same hierarchy, are
said to be equivalent Q ≡ R if and only if they have the same closure.

Property. Let Q and R be two equivalent Intuitionistic hierarchical fuzzy
sets. If lI ∈ dom(Q) ∩ dom(R), then <µ, ν>(Q.lI) = <µ, ν>(R.lI)
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Proof. According to the definition of the closure of a H-IFS F, Definition 4.3.1,
the closure of F preserves the degrees that are specified in F. As Q and R have
the same closure (by definition of the equivalence), an element that belongs
to Q and R necessarily has the same degree <µ, ν> in both.

We can note that R contains the same element as Q with the same <µ, ν>,
and also one more element Whole-Pasteurised-milk <1, 0>. The <µ, ν> asso-
ciated with this additional element is the same as in the closure of Q. Then it
can be said that the element, Whole-Pasteurised-milk <1, 0> is derivable in
R through Q.

The same conclusions can be drawn in the case of condensed whole milk
<0.7, 0.1> ��
Definition 4.3.2. Let F be a hierarchical fuzzy set, with dom(F ) =
{l1, . . .., ln}, and F−k the H-IFS resulting from the restriction of F to the
domain dom(F )\{lk}. lk is deducible in F if

<µ, ν>clos(F−k)(lk) = <µ, ν>clos(F)(lk)

As a first intuition, it can be said that removing a derivable element from
a hierarchical fuzzy set allows one to eliminate redundant information. But,
an element being derivable in F does not necessarily mean that removing it
from F will have no consequence on the closure: removing k from F will not
impact the degree associated with k itself in the closure, but it may impact
the degrees of the sub-elements of k in the closure.

For instance, if the element Pasteurised milk is derivable in Q, accord-
ing to Definition 4.3.2, removing Pasteurised-milk <1, 0> from Q would not
modify the degree of Pasteurised milk itself in the resulting closure, but it
could modify the degree of its sub-element Whole-pasteurised-milk. Thus,
Pasteurised-milk <1, 0> can not be derived or removed. This remark leads us
to the following definition of a minimal hierarchical fuzzy set.

Definition 4.3.3. In a given equivalence class (that is, for a given closure C),
a hierarchical fuzzy set is said to be minimal if its closure is C and if none of
the elements of its domain is derivable.

For instance the H-IFSs S1 and S2 are minimal (none of their elements is
derivable). They cannot be reduced further.

S1 = Milk<1, 0>

S2 = {Milk <1, 0>,Whole-Milk <0.7, 0.1>,Whole-Pasteurised-milk
<1, 0>,Condensed-Milk <0.4, 0.3>}

5 Replacing and Constraining Unknown Attribute
Values

All descendents of an instance of a high-level concept are replaced with a
minimal H-IFS has these descendents as members. A null value is regarded
as a partial value with all base domain values as members. We refer to the
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resultant partial value, obtained as a result of this process, as a primal partial
value. The replacement process is thus performed by the following procedure:

Procedure: replacement

Input : A concept table R consisting of partial values, or nulls
Output : A re-engineered partial value table U
Method : For each attribute value of R recursively replace the cell value
by a primal partial value. For each cell of R replace, the primal partial
value by a pruned prime-partial –value, until a minimal partial value
is reached

If a particular member of a partial value violates the domain constraint
(rule) then it is pruned from the minimal H-IFS primal partial value. This
process is continued until all partial values have been pruned by the con-
straints as much as possible. We refer to the resultant partial value, obtained
as a result of this process, as a minimal partial value.

In addition in an integrated DBMS environment it will be also useful not
to query all sources, but only those that contain information relevant to our
request. This is quite critical for achieving better query performance. For this
reason we equip our Integrated architecture with a repository that contains
various constraints (i.e. Intuitionistic Fuzzy Range Constraints, Intuitionis-
tic Fuzzy Functional Dependencies, etc) that are related to the information
sources that participate in the Integrated Architecture.

Range constraints : such as “The average income per person is estimated
to be in the range of AC 50K”. Considering a finite universe of discourse, say
X whose cardinality is N. Let us suppose that X = {X1,X2, . . .,Xn} and
the Intuitionistic fuzzy number ∼ a given by ∼ a = {(xi, µi, νi) : xi ∈ X,
I = 1, 2. . .N} We can express the above constraint as follows ∼ Income50K
{(49, .8, .1), (50, .9, .02)(51, .7, .15)}.

Classical data integrity constraints such as “All persons stored at a source
have a unique identifier”.

Functional Dependencies: for instance, a source relation S1 (Name, lives,
income, Occupation) has a functional dependency Name → (Lives, ∼Income).
These constraints are very useful to compute answers to queries.

There are several reasons we want to consider constraints separately from
the query language. Describing constraints separately from the query language
can allow us to do reasoning about the usefulness of a data source with respect
to a valid user request.

Some of source constraints can be naturally represented as local con-
straints. Each local constraint is defined on one data source only. These con-
straints carry a rich set of semantics, which can be utilized in query processing.
Any projected database instance of source, these conditions must be satisfied
by the tuples in the database.

Definition 5.1. Let si, . . . ,sl be l sources in a data-integrated system. Let
P = {pi, . . . , pn} be a set of global predicates, on which the contents of each
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source s are defined. A general global constraint is a condition that should be
satisfied by any database instance of the global predicates P.

General global constraints can be introduced during the design phase of
such a data-integration system. That is, even if new sources join or existing
ones leave the system, it is assumed that these constraints should be sat-
isfied by any database instance of the global predicates. Given the global
predicate Income, if a query asks for citizens with an average income above
∼Income60K, without checking the source contents and constraints, the int-
egrated system can immediately know that the answer is empty.

To this extent we can interrogate the constraints repository to find out if
a particular source contains relevant information with respect to particular
request. We now consider the problem of aggregation for the partial value
data model. In what follows we are concerned with symbolic attributes, which
are typically described by counts and summarised by aggregated tables. The
objective is to provide an aggregation operator which allows us to aggregate
individual tuples to form summary tables.

6 Summary Tables and Aggregation

A summary table R, is represented in the form [23] of an Intuitionistic fuzzy
relation (IFR).

Aggregation (A): An aggregation operator A is a function A(G) where
G = {<x, µF (x), νF (x)>|x ∈ X} where x = <att1, . . . , attn> is an ordered
tuple belonging to a given universe X, {att1, . . . , attn} is the set of attributes
of the elements of X,µF (x) and νF (x) are the degree of membership and non-
membership of x. The result is a bag of the type {<x′, µF (x′), νF (x′)>|x′ ∈
X}. To this extent, the bag is a group of elements that can be duplicated and
each one has a degree of µ and ν.
Input: Ri = (l, F,H) and the function A(G)
Output: Ro = (lo, Fo,Ho) where

• l is a set of levels l1, . . ., ln, that belong to a partial order ≤ O
To identify the level l as part of a hierarchy we use dl.

l⊥ : base level l� : top level

for each pair of levels li and lj we have the relation

µij : li × lj → [0, 1] νij : li × lj → [0, 1] 0 < µij + νij < 1

• F is a set of fact instances with schema F = {<x, µF (x), νF (x)>|x ∈
X}, where x = <att1, . . ., attn> is an ordered tuple belonging to a given
universe X, µF (x) and νF (x) are the degree of membership and non-
membership of x in the fact table F respectively.



www.manaraa.com

Representation of Value Imperfection 487

• H is an object type history that corresponds to a structure (l, F,H ′) which
allows us to trace back the evolution of a structure after performing a set
of operators i.e. aggregation

The definition of the extended group operators allows us to define the
extended group operators Roll up (∆), and Roll Down (Ω).

Roll up (∆): The result of applying Roll up over dimension di at level dlr
using the aggregation operator A over a relation Ri = (li,Fi,Hi) is another
relation Ro = (lo,Fo,Ho)
Input: Ri = (li,Fi,Hi)
Output: Ro = (lo,Fo,Ho)

An object of type history is a recursive structure H =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω is the initial state
of the relation.

(l, A, H ′) is the state
of the relation after
performing an
operation on it.

The structured history of the relation allows us to keep all the information
when applying Roll up and get it all back when Roll Down is performed. To
be able to apply the operation of Roll Up we need to make use of the IFSUM

aggregation operator.
Roll Down (Ω): This operator performs the opposite function of the Roll

Up operator. It is used to roll down from the higher levels of the hierarchy
with a greater degree of generalization, to the leaves with the greater degree
of precision. The result of applying Roll Down over a relation Ri = (l, F,H)
having H = (l′, A′,H ′) is another relation Ro = (l′, F ′,H ′).
Input: Ri = (l, F,H)
Output: Ro = (l′, F ′,H ′) where F ′ → set of fact instances defined by opera-
tor A.

To this extent, the Roll Down operative makes use of the recursive history
structure previously created after performing the Roll Up operator.

The definition of aggregation operator points to the need of defining the IF
extensions for traditional group operators [20], such as SUM, AVG, MIN and
MAX. Based on the standard group operators, we provide their IF extensions
and meaning.

IFSUM : The IFsum aggregate, like its standard counterpart, is only defined
for numeric domains. The relation R consists of tuples Ri with 1 ≤ i ≤ m.
The tuples Ri are assumed to take Intuitionistic Fuzzy values for the attribute
attn−1 for i = 1 to m we have Ri[attn−1] = {<µi(uki), νi(uki)>/uki|1 ≤ ki ≤
n}. The IFsum of the attribute attn−1 of the relation R is defined by:

IFSUM ((attn−1)(R)) =

{
<u>/y|

((
u =

m

min
i=1

(µi(uki), νi(uki))

∧
(
y =

∑km

ki=k1
uki

)(
∀k1,...km : 1 ≤ k1, . . .km ≤ n

)))}
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Example:

IFSUM ((Amount)(ProdID))
= {<.8, .1>/10}+ {(<.4, .2>/11), (<.3, .2>/12)}

+{(<.5, .3>/13), (<.5, .1>/12)}
= {(<.8 ∧ .4, .1 ∧ .2>/10 + 11), (<.8 ∧ .3, .1 ∧ .2>/10 + 12)}

+{<.5, .3>/13, <.5, .1>/12}
= {(<.4, .2>/21), (<.3, .2>/22)}+ {<.5, .3>/13, <.5, .1>/12}
= {(<.4 ∧ .5, .2 ∧ .3>/21 + 13), (<.4 ∧ .5, .2 ∧ .1>/21 + 12),

(<.3 ∧ .5, .2 ∧ .3>/22 + 13), (<.3 ∧ .5, .2 ∧ .1>/22 + 12)
= {(<.4, .3>/34), (<.4, .2>/33), (<.3, .3>/35), (<.3, .2>/34)}
= {(<.3, .3>/34), (<.4, .2>/33), (<.3, .3>/35)}

IFAVG : The IFAVG aggregate, like its standard counterpart, is only de-
fined for numeric domains. This aggregate makes use of the IFSUM that was
discussed previously and the standard COUNT. The IFAVG can be defined as:

IFAVG((attn−1)(R) = IFSUM ((attn−1)(R))/COUNT ((attn−1)(R))

IFMAX : The IFMAX aggregate, like its standard counterpart, is only de-
fined for numeric domains. The IFsum of the attribute attn−1 of the relation
R is defined by:

IFMAX ((attn−1)(R))

= {<u>y|((u =
m

min
i=1

(µi(uki), νi(uki)) ∧ (y =
m

max
i=1

(µi(uki), νi(uki)))

(∀k1,...km : 1 ≤ k1, . . .km ≤ n))}

IFMIN : The IFMIN aggregate, like its standard counterpart, is only de-
fined for numeric domains. Given a relation R defined on the schema X
(att1, . . . , attn), let attn−1 defined on the domain U = {u1, . . . , un). The rela-
tion R consists of tuples Ri with 1 ≤ i ≤ m. Tuples Ri are assumed to take
Intuitionistic Fuzzy values for the attribute attn−1 for i = 1 to m we have
Ri[attn−1] = { < µi(uki), νi(uki) > /uki|1 ≤ ki ≤ n}. The IFsum of the
attribute attn−1 of the relation R is defined by:

IFMIN ((attn−1)(R))

= {<u>/y|((u =
m

min
i=1

(µi(uki), νi(uki)) ∧ (y =
m

min
i=1

(µi(uki), νi(uki)))

(∀k1,...km : 1 ≤ k1, . . .km ≤ n))}

We can observe that the IFMIN is extended in the same manner as IFMAX

aggregate except for replacing the symbol max in the IFMAX definition
with min.
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6.1 Summarisation Paths

The structure of any H-IFS can be described by a domain concept relation
DCR = (Concept, Element), where each tuple describes a relation between
elements of the domain on different levels.

The DCR can be used in calculating recursively [24] the different sum-
marisation or selection paths as follows:

PATH ← DCR ��
{x=1...(n−2)|n>2}

DCRx

If n ≤ 2, then DCR becomes the Path table as it describes all summarisa-
tion and selection paths.

These are entries to a knowledge table that holds the metadata on parent-
child relationships. An example is presented below:

Figure 5 shows how our Milk hierarchy knowledge table is kept. Paths are
created by running a recursive query that reflects the ‘PATH’ algebraic state-
ment. The hierarchical IFS used as example throughout this paper comprises
of three levels, thus calling for the SQL-like query as below:

SELECT A.Concept as Grand-concept, b.concept, b.element
FROM DCR as A, DCR as B
WHERE A.child =B.parent;

This query will produce the following paths (Fig. 6):

DCR
Concept Element

Milk <1.0, 0.0> Pasteurised Milk <1.0, 0.0> 
Milk <1.0, 0.0> Whole Milk <0.7, 0.1> 
Milk <1.0, 0.0> Condensed Milk <0.4, 0.3> 
Pasteurised Milk <1.0, 0.0> Whole Pasteurised Milk <1.0, 0.0> 

Whole Milk <0.7, 0.1> Whole Pasteurised Milk <1.0, 0.0> 
Whole Milk <0.7, 0.1> Whole Condensed Milk <0.7, 0.1> 
Condensed Milk <0.4, 0.3> Whole Condensed Milk <0.7, 0.1> 

Fig. 5. Domain concept relation

Path
Grand-concept Concept Element Path Colour

Milk
<1.0, 0.0>

Pasteurised Milk
<1.0, 0.0>

Whole Pasteurised Milk
<1.0, 0.0>

Red

Milk
<1.0, 0.0>

Whole Milk
<0.7, 0.1>

Whole Pasteurised Milk
<1.0, 0.0>

Blue

Milk
<1.0, 0.0>

Whole Milk
<0.7, 0.1>

Whole Condensed Milk
<0.7, 0.1>

Green

Milk
<1.0, 0.0>

Condensed Milk
<1.0, 0.0>

Whole Condensed Milk
<0.7, 0.1>

Brown

Fig. 6. Path table
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Milk
<1.0, 0.0>

Whole milk
<0.7, 0.1>

Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<1.0, 0.0>

Condensed milk
<0.4, 0.3>

Whole pasteurized milk
<1.0, 0.0>

Fig. 7. Pictorial representation of paths

Figure 7 presents a pictorial view of the four distinct summarisation and
selection paths.

These paths will be used in fuzzy queries to extract answers that could
be either definite or possible. This will be realised with the aid of the predi-
cate (θ).

A predicate (θ) involves a set of atomic predicates (θ1, . . . , θn) associated
with the aid of logical operators p (i.e. ∧, ∨, etc.). Consider a predicate θ that
takes the value “Whole Milk”, θ = “Whole Milk”.

After utilizing the IFS hierarchy presented in Fig. 7, this predicate can be
reconstructed as follows:

θ = θ1 ∨ θ2 ∨ . . . ∨ θn

In our example, θ1 = “Whole Milk”, θ2 = “Whole Pasteurised Milk” and
θn =“Condensed Whole Milk”.

The reconstructed predicate θ = (Whole Milk ∨ Whole Pasteurised Milk
∨ Condensed Whole Milk) allows the query mechanism to not only definite
answers, but also possible answers [25].

In terms a query retrieving data from a summary table, the output con-
tains not only records that match the initial condition, but also those that
satisfy the reconstructed predicate. Consider the case where no records sat-
isfy the initial condition (Whole Milk). Traditional aggregation query would
have returned no answer, however, based on our approach, the extended query
would even in this case, return an answer, though only a possible one, with a
specific belief and disbelief <µ, ν>. It will point to those records that satisfy
the reconstructed predicateθ, more specifically, “Whole Pasteurised Milk and
Condensed Whole Milk”.
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7 Conclusions

We provide a means of using background knowledge to re-engineer the data
representation into a partial value representation with the aid of H-IFS and
Intuitionistic Fuzzy relational representation.

The hierarchical links are defined by the “kind of, ≤” relation. The mem-
bership of an element in a H-IFS has consequences on the membership and
non-membership of its sub elements in this set. The notion of H-IFS, that
may be defined on a part of a hierarchy and the notion of closure of a H-IFS,
that is explicitly defined on the whole hierarchy, using the links between the
elements that compose the hierarchy.

H-IFSs that have the same closure define equivalence classes, called mini-
mal H-IFS. Minimal fuzzy sets are used as a basis to define the generalization
of a H-IFS fuzzy set. The proposed methodology aims at enlarging the user
preferences expressed when defining a query, in order to obtain related and
complementary answers.

We have discussed how domain knowledge presented in the form of back-
ground knowledge, such as integrity constraints, functional dependencies or
details of the concept hierarchy, may be used to reduce the amount of missing
data in the database.

We have presented a new multidimensional model that is able to operate
over data with imprecision in the facts and the summarisation hierarchies.
Classical models imposed a rigid structure that made the models present dif-
ficulties when merging information from different but still reconcilable sources.

This is likely to be a useful tool for decision support and knowledge dis-
covery in, for example, data mediators, data warehouses, where the data are
often subject to such imperfections. Furthermore we notice that our approach
can be used for the representation of Intuitionistic fuzzy linguistic terms.
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Summary. The neural extended Kalman filter is an adaptive state estimation rou-
tine that can be used in target-tracking systems to aid in the tracking through
maneuvers. A neural network is trained using a Kalman filter training paradigm
that is driven by the same residual as the state estimator and approximates the dif-
ference between the a priori model used in the prediction steps of the estimator and
the actual target dynamics. An important benefit of the technique is its versatility
because little if any a priori knowledge of the target dynamics is needed. This al-
lows the neural extended Kalman filter to be used in a generic tracking system that
will encounter various classes of targets. Here, the neural extended Kalman filter is
applied simultaneously to three separate classes of targets each with different ma-
neuver capabilities. The results show that the approach is well suited for use within
a tracking system without prior knowledge of the targets’ characteristics.

1 Introduction

In sensor data fusion, the concept of target tracking is the combination of
multiple sensor reports from a variety of sensors and at different times to
provide a filtered estimate of the target’s dynamic state. A significant prob-
lem in this Level 1 data fusion problem [1, 2] is tracking a target through a
maneuver. Estimation lagging or loss of filter smoothing in the state estimates
often result. A wide variety of techniques to address the maneuver-tracking
issue have been developed. The basic underlying concept of all of these meth-
ods, clearly stated in [3], is that the most important issue in target tracking
is to model the target motion accurately. The result of accurate target mo-
tion models is significantly improved track estimates. The technique described
in [4] uses a maneuver detection step that determines when a modified Kalman
filter model should be employed. The model used in this modification is de-
rived by an estimate of the severity of the maneuver. Other techniques that
K.A. Kramer and S.C. Stubberud: Tracking of Multiple Target Types with a Single Neural

Extended Kalman Filter, Studies in Computational Intelligence (SCI) 109, 495–512 (2008)
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have been developed to track through a maneuver have been similar to that
of [5]. Such techniques develop a parameter-based model that models partic-
ular maneuvers. These approaches provide an improved model, which more
closely emulates potential motion of a target. One of the most widely used
techniques to track through a maneuver is that of the interacting multiple
model (IMM) approach [6] and [7]. (An enhanced version, the variable struc-
ture IMM (VS-IMM), reduces the computational overhead that can arise.)
The basic premise of the IMM is to generate a subset of motion models over
the span of the space of potential target motion models. The IMM approach
requires a priori information about the capabilities of the target. While the
different motion models in implemented systems have typically been simply a
high process noise model and a low process noise model, current research often
assumes that any maneuver the target would be able to perform is modeled
to some degree.

Another concept is to continually adapt the model of the target motion
or dynamics based on the current estimates. One such approach is a neural
extended Kalman filter (NEKF) and is here applied to the tracking problem.
The NEKF is an adaptive neural network technique that trains completely on-
line. Unlike several other neural network techniques that change the process or
measurement noise on-line [8], the NEKF learns a function that approximates
the error between the a priori motion model and the actual target dynamics.
The NEKF, originally developed for operations in a control loop [9] and [10],
is comprised of a coupled Kalman filter. The two components are the standard
tracking state estimator and a Kalman filter training paradigm similar to that
first developed by Singhal and Wu [11] and applied to dynamic system identifi-
cation in [12]. The NEKF is similar in concept to the Kalman filter parameter
estimation techniques as in [13] and [14] where parameters of the dynamic
model were modified using the Kalman filter as the estimator to improve the
dynamic model. Unlike those earlier techniques which utilized a known func-
tional structure, the NEKF uses the general function approximation property
of a neural network. This allows the NEKF to be applied to a variety of targets
without prior knowledge of capabilities and a large database to draw from as
would be necessary in most standard IMM implementations. A single NEKF
can be applied a wide variety of target classes without significant change in
performance.

To demonstrate this generic property, the NEKF will be analyzed in its
performance on three separate types of targets: a ground target that can stop
and change directions quickly, an aircraft performing a series of racetracks
in flight, and surface ship with longer requirements for velocity changes. The
analysis shows that a single NEKF using the same fixed parameters can used
to track these targets with similar accuracy performance results.

The development of the NEKF algorithm begins with a background discus-
sion of maneuver tracking and the issues that the EKF can experience in this
application. This is followed by an overview of the function approximation ca-
pabilities of a neural network. After this background information is presented,
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the actual NEKF algorithm is developed. Then, the example application of the
NEKF to a generic tracking problem set starts with a description of the three
target motions used in the analysis The performance results are provided and
analyzed.

2 Neural Extended Kalman Filter Development

The NEKF is based on the standard extended Kalman filter (EKF) tracking
algorithm and the use of a neural network that trains on-line. This develop-
ment begins with the concept of maneuver target tracking. This is followed by
a discussion of function approximation of a neural network. With this back-
ground information, the development of the NEKF algorithm is presented.

2.1 Maneuver Tracking

Target tracking is part of Level 1 sensor data fusion [1, 2]. The concept is to
combine associated measurements (related to the same target). These mea-
surements can come from one or more sensors and are reported at different
times. These measurements all include uncertainty or random errors in their
reports based on the quality of the sensors as well as environmental conditions
and target properties. The estimator used in the target tracking system is usu-
ally designed to filter or smooth the measurements over time by incorporating
the statistics of the measurement uncertainty and an estimate of the target
motion. One of the standard estimation techniques used in target tracking is
that of the extended Kalman filter.

The standard EKF equations are given as

Kk = Pk|k−1

∂h
(
x̂k|k−1

)
∂x̂k|k−1

T
(

∂h
(
x̂k|k−1

)
∂x̂k|k−1

Pk|k−1

∂h
(
x̂k|k−1

)
∂x̂k|k−1

+ Rk

)−1

(1a)

x̂k|k = x̂k|k−1 + Kk

(
zk − h

(
x̂k|k−1

))
(1b)

Pk|k =

(
I−Kk

∂h
(
x̂k|k−1

)
∂x̂k|k−1

)
Pk|k−1 (1c)

x̂k+1|k = f
(
x̂k|k

)
(1d)

Pk+1|k =

(
∂f
(
x̂k|k

)
∂x̂k|k

)
Pk|k

(
∂f
(
x̂k|k

)
∂x̂k|k

)T

+ Qk. (1e)

Equations (1a)–(1c) are the update equations where xk denotes the target
states and Kk is the Kalman Gain. The output-coupling function, h(.), defines
the mathematical relation between the states and the measurements. The
variable P defines the state error covariance matrix, which provides a quality
measure of the state estimate, while R is the covariance of the measurement
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noise. The subscript k|k − 1 indicates a prediction while the subscript k|k
indicates an update. The update equations use the weighted residual in (1c)
to correct the predicted state estimate based on the provided measurements.
In the prediction equations, (1d) and (1e), the matrix Q defines the process
noise covariance or a quality measure of the target motion model or state-
coupling function f(.). The matrices of partial derivatives in (1a), (1c), and
(1e), are used to linearize the output-coupling and state-coupling functions
and referred to as the Jacobians.

For standard tracking, the target state kinematics are described often as
position and velocity. For a two-dimension problem, the state vector would be
defined as

xk = [xk ẋk yk ẏk]T . (2)

The quality of the target motion model has a significant impact on the
capabilities of the EKF as an estimator. Unlike application in control systems
[15, 16], with a tracking problem external inputs on the target are not often
known. Thus, the developed models, especially for the target motion, do not
include an external input term. Also, the motion model must be defined priori
to operations and, therefore, is often defined to be a straight-line motion
model:

xk+1 = Axk =

⎡
⎢⎢⎣

1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

xk

ẋk

yk

ẏk

⎤
⎥⎥⎦ . (3)

If the target deviates from this model significantly, the EKF state estimate
can lag the true trajectory. In Fig. 1, a maneuvering target trajectory and its
associated measurements with noise are shown. Figure 2 shows the target-
track estimates for the trajectory using the motion model of (3) in the EKF.
As a result, the target track falls behind the trajectory. Such a problem can
be compensated for if the process noise Q is inflated. This has the beneficial
effect of reducing the impact of the prediction state estimates in the Kalman
filter. However, the prediction equations smooth the estimates so that, while,
as in Fig. 3, the tracking system follows the target through the maneuver, the
resulting track is quite noisy.

To avoid this problem, two approaches have been tried. The first is to vary
the process noise when a maneuver is detected and return it to its base setting
once the maneuver is completed as in [6,17]. The second is to adapt the model
to a maneuver as in [18].

Using this second type of approach, an adaptive Kalman filter is imple-
mented that can change to a variety of maneuver models without a priori
knowledge of the functional form of the target’s dynamics. Also, unlike many
other tracking techniques applied to maneuvering targets [18,19], the NEKF is
a general approach that can be applied to each target. Thus, the technique can
applied to various target types simultaneously with acceptable performance
without the need to identify the target a priori.
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Fig. 1. Target and associated measurements with noise
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Fig. 2. The tracked target trajectory lags the true trajectory once the maneuver
occurs
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Fig. 3. The tracked target trajectory handles the maneuver but does not filter out
the noise

2.2 The Neural Network as a Function Approximator

The quality of the process model is a matrix-valued function that estimates
the dynamics of the target

ftrue = f (·) + ε. (4)

The error in the model, ε, can be estimated arbitrarily closely using a func-
tion aproximation scheme that meets the criteria for the Stone–Weierstrauss
Theorem [20]. One solution that fits this criterion is a neural network that uses
multi-layer perceptrons (MLPs) as the squashing functions in each node of the
hidden layer. (The MLP can also be replaced by a set of multi-dimensional
Gaussians as described in [21] and [22]. These are also referred to as ellipti-
cal or radial basis functions.) A layer in a neural network refers to a set of
operations performed in parallel. In this case, the neural network contains at
least one hidden layer that maps a set of input values to an output values
between ±1. Each layer contains one or more of the same function operations
with different input combinations. Each function operation is a node in the
hidden layer. The hidden layer outputs are combined linearly at the output
layer.

Thus, for the MLP-based neural network in this effort, an improved func-
tion approximation

ftrue = f (·) + NN (·) + δ, (5)

where δ < ε, is generated.
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Fig. 4. The sigmoid squashing function used by the neural network in the NEKF

A wide variety of functions can be used in the hidden layer of the neural
network. The function that is usually employed in the NEKF is

g(y) =
1− e−y

1 + e−y
. (6)

The function is shown in Fig. 4. This function is considered part of a class
of function referred to as squashing functions due to the mapping of large
magnitude values into values close to ±1. In the neural network, the variable
y is defined as

y =
∑

k

wkxk, (7)

where w is a weight and, for the tracking problem, the x’s are the track states.
The neural network combines several of these functions and the selection of
the weights,

NN (x,w, β) =
∑

j

βjgj (x,wj) =
∑

j

βj
1− e

−∑
k

wjkxk

1 + e
−∑

k

wjkxk
. (8)

Equation (8) creates a formulation referred to as a multi-layered perceptron
(MLP).

The MLP results in wide variety of functions being developed. In Fig. 5,
an output of a neural network of the form of (6), with two input variables,
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Fig. 5. The function of the MLP with only two output weights allows significant
function approximation near the coordinate origin

the same two randomly-selected weights, wjk, used in each squashing function
and combined together as

−1.5g1 + 2g2, (9)

is shown. By adjusting the input and output weights, other functions can be
approximated. However, if the magnitudes of the input weights or the input
variables become too large in any one direction, the function approximation
capability of the MLP is reduced. When the input variables of the function
shown become large, the function loses its complexity. It is noted that (7) is
a sum which means that along the axis of opposite signs of the addends there
exists a non-flat function. However, the greatest variation occurs in the region
of small input variable values. The range of interest of the input variables can
be scaled through the weights of (7). This indicates that the weights for each
squashing function should scale the value of (7) based on the magnitude of
the input variables used to track the maneuvering target.

Figure 5 also shows that a small number of nodes can form a capable func-
tion approximator. Greater complexity may require a larger number of nodes
in the hidden layer of the MLP. However, if the selection of the number of
these functions becomes too large, then other problems may arise. In addition
to the increased computational complexity, a large number of hidden nodes
can cause the NEKF to create “chirps” in the estimate.
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2.3 The Neural Extended Kalman Filter Algorithm

The neural extended Kalman filter is a combination of the standard extended
Kalman filter for state estimation and that of the neural network training
algorithm. Using the same concept as in [14] for parameter estimation, the
so-called parameter-free technique of the NEKF has a combined state vector of

x̄k =
[
xk

wk

]
=

⎡
⎣ xk

ωk

βk

⎤
⎦ , (10)

where xk denotes the target states and ωk and βk represent the input and
output weights, respectively.

The coupling of the neural network training to the state estimation to
form the NEKF is quite straightforward. In both applications of the EKF, as
a tracker and as a training paradigm, the same residual is used to perform
the same function: ensure that the output or estimated measurements of the
system estimate make the residuals as small as possible.

With the NEKF-based tracking approach, the initial process model is the
straight-line motion model, (3), with a neural network that is varied during
operations, added to this model. This addition improves the target motion
model, thus improving the state estimates of the target track. The continual
updating of the neural network permits the use of a smaller neural network.
This is a result of the fact that the NEKF only needs to approximate the local
function for the maneuver and not the entire trajectory.

The implemented neural-augmented process model for the tracking system
component of the NEKF becomes:

f (xk) + NN (ωk, βk,xk) =

⎡
⎢⎢⎣

1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

⎤
⎥⎥⎦xk +

⎡
⎢⎢⎣

NN1 (ωk, β1k,xk)
NN2 (ωk, β2k,xk)
NN3 (ωk, βnk,xk)
NN4 (ωk, βnk,xk)

⎤
⎥⎥⎦ . (11)

Expanding (11) to incorporate training, the state-coupling function of the
overall NEKF is then defined as:

f̄ (x̄k) =

⎡
⎢⎢⎢⎢⎣

1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

|
|
|
|
04×num wts

0num wts×4 | I

⎤
⎥⎥⎥⎥⎦ x̄k +

⎡
⎢⎢⎢⎢⎣

NN1 (ωk, β1k,xk)
NN2 (ωk, β2k,xk)
NN3 (ωk, βnk,xk)
NN4 (ωk, βnk,xk)

0num of wts

⎤
⎥⎥⎥⎥⎦ . (12)

=

[
F | 0
0 | I

]
x̄k + NN (ωk, βk,xk) = F̄ · x̄k + NN (ωk, βk,xk)
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The associated Jacobian would be:

F̄ =
∂ f̄ (x̄k)

∂x̄k
=

[
F + ∂NN(ωk,βk,xk)

∂xk
| ∂NN(ωk,...)

∂ω k

∂NN(ωk,...)
∂βk

0 | I

]
. (13)

Equation (13) results in the state estimation and neural network training
being coupled. Using these equations as the system dynamics, the equations
of the NEKF are defined as

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(14a)

ˆ̄xk|k =
[

x̂k|k
ŵk|k

]
= ˆ̄xk|k−1 + Kk

(
zk − h(x̂k|k−1)

)
(14b)

Pk|k = (I−KkHk)Pk|k−1 (14c)

ˆ̄xk+1|k =
[

x̂k+1|k
ŵk+1|k

]
=
[
f
(
x̂k|k,uk

)
+ NN

(
ŵk|k, x̂k|k

)
ŵk|k

]
(14d)

Pk+1|k =

⎛
⎝F +

⎡
⎣ ∂NN(ŵk|k,x̂k|k)

∂ˆ̄xk|k

0

⎤
⎦
⎞
⎠Pk|k

⎛
⎝F +

⎡
⎣ ∂NN(ŵk|k,x̂k|k)

∂ˆ̄xk|k

0

⎤
⎦
⎞
⎠

T

+ Qk

(14e)

where ˆ̄xk|k is the augmented state estimate vector of (10).
The measurement Jacobian is:

H =

[
∂h
(
x̂k|k−1

)
∂x̂k|k−1

0w

]
, (15)

the same as the EKF Jacobian of (1a) and (1c) with the augmentation of
zeros to handle the change in dimensionality.

3 Multi-Target Tracking and Analysis

A three target example is employed to demonstrate the ability of the NEKF
to work in a generic tracking environment. The vehicle capabilities are not
known a priori.

3.1 Target Motion Description

The test-case example was chosen to contain three separate target exam-
ples that could exist simultaneously in a battlespace. Such target types can
be tracked simultaneously. Thus. to investigate and analyze the NEKF as a
generalized tracking algorithm that can be applied to a wide variety of target



www.manaraa.com

Tracking of Multiple Target Types 505

Fig. 6. Three targets (flight, ground, and sea) in the scenario

classes without a priori information, three different target motions were devel-
oped: an aircraft, a surface ship, and a ground vehicle. The two latter targets
are generated by a simulator while the air target is from the truth data file of
an F-4 aircraft in flight performing a series of racetrack-like maneuvers. Each
target provided two thousand sample points at one second intervals. The one
second intervals were chosen to use the same sample time of the real flight
data. The targets’ trajectories are shown in Fig. 6.

The aircraft data shows the flight path of a US Navy F-4 flying a series
of racetrack-like patterns. As seen in Fig. 6, the racetracks are clearly non-
overlapping and provide an additional challenge to the NEKF as the maneu-
vers, while similar, are different and require continual changes in the neural
network weights. The reported positions are in absolute x–y coordinates with
units of meters.

The simulated data was generated by a target simulator that defined var-
ious legs of the target trajectory. Each leg contained a desired heading in
degrees where 0◦ is defined along the positive x-axis and a target speed. At
the start of each new leg of the trajectory, a transition time is also provided.
This time represents the time that the vehicle takes to go from the last head-
ing to the desired heading at uniform changes. For example, a change from
10 to 20m s−1 in 10 s would mean a constant 1m s−2 acceleration would be
applied to the target. If this transition time is longer than the time assigned
to the leg of the trajectory, then the maneuver is not completed.

The first simulated target was generated to emulate a surface ship. Table 1
lists the parameters that were used to develop its trajectory. The second
simulated target was designed to emulate a ground target. This included the
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Table 1. Trajectory parameters For sea target

Leg start time Time on Length of Desired Desired speed
(s) leg (s) acceleration (s) heading (knts)

(Degrees)

0 300 0 90 10
300 280 120 145 15
580 120 90 30 15
700 600 120 120 10
1,300 700 180 250 20

Table 2. Trajectory parameters for ground target

Leg Time Length Of Desired Desired
start time on leg acceleration (s) Heading Speed
(s) (s) (Degrees) (m s−1)

0 200 0 360 1.0
200 500 30 270 1.5
700 450 450 360 1.5
1,150 150 10 360 0
1,300 700 1 90 1.0

target motion having a stop and an instantaneous turn. The parameters that
described its motion are listed in Table 2.

For the NEKF tracking system, the measurements were assumed to be
tagged such that the association was not considered an issue. The process
noise for the track states in NEKF was defined as in (16):

Q = 0.0172

⎡
⎢⎢⎣

dt3/3 dt2/2 0 0
dt2/2 dt 0 0

0 0 dt3/3 dt2/2
0 0 dt2/2 dt

⎤
⎥⎥⎦ (16)

The process noise on the weights for neural network for each target was set
to 10·I for the input weights and to 10−4·I for the output weights. The initial
error covariance P was set to 1,000·I for the track states and to 100·I for the
neural network weights. Each target state includes its kinematic information
and their own weights for the NEKF based on their own maneuvers. The
measurements were defined as x-y positions with independent measurement
noise of ±50m on each coordinate.

3.2 Results and Analysis

The NEKF was compared to three Kalman filters. The linear Kalman fil-
ter could be used as a result of using the position measurement type. Each
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Kalman filter used a straight-line motion model for the target dynamics but
incorporated a different process noise. The process noise matrix defined in
16 provided the baseline used in the analysis. For the larger, second process
noise, the baseline was multiplied by a factor of 100. The smaller, third process
noise was set to that of the baseline was divided by a factor of 100. The initial
covariance matrix P was set to the same value as the NEKF, 1,000·I. The
NEKF used the fixed motion model of (11) as the a priori motion model and
the process noise defined in Sect. 3.1. The same filters were used to track each
target.

Table 3 contains the average distance error throughout the target path
and the associated standard deviation of the errors for each target resulting
from the NEKF. Figures 7–9 show the Monte Carlo errors over each point of
the trajectory for the air target, ground target, and sea target, respectively.
Table 4 denotes the results for the Kalman filter where the process noise on
the track states is the same as the NEKF. Tables 5 and 6 contain the error
results for the Kalman filter trackers with 100 times and 0.01 times the NEKF
track state process noise, respectively.

Table 3. NEKF error results

Target Average error (m) Standard deviation (m)

Air 415.5 290.6
Ground 23.18 4.633
Sea 22.5 3.36
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Fig. 7. NEKF tracking error results for flight target showing difficulty tracking
through repeated sharp turns
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Fig. 8. NEKF tracking error results for ground target showing good tracking results,
particularly following initial training period
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Fig. 9. NEKF tracking error results for sea target showing good tracking results,
particularly following initial training period

Figures 10–12 show the Monte Carlo errors over each point of the trajectory
for the equivalent process noise Kalman filter.

The results indicate that NEKF that is not tuned for a specific target type
performs well in each case. The Kalman filter clearly is superior when tracking
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Table 4. Kalman filter error results – baseline Q

Target Average error Standard deviation

Air 1,255.7 1,092.9
Ground 15.0 1.97
Sea 23.1 12.0

Table 5. Kalman filter error results – large Q

Target Average error Standard deviation

Air 332.0 646.1
Ground 24.9 1.61
Sea 26.5 1.911

Table 6. Kalman filter error results – small Q

Target Average error Standard deviation

Air 4,989.9 1,585.3
Ground 17.5 11.11
Sea 89.2 97.1
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Fig. 10. Kalman filter tracking error results for flight target showing greater diffi-
culty tracking through repeated sharp turns

the ground target over the entire trajectory. It has approximately a 50% im-
provement. In contrast, the Kalman filter performs slightly worse against the
sea target on average. The standard deviation indicates that the performance
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Fig. 11. Kalman filter tracking error results for ground target showing better track-
ing results than those of the NEKF
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Fig. 12. Kalman tracking error results for sea target showing large variance in
tracking error
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is widely varying unlike the with NEKF. For the air target, performance differ-
ences are much more significant: the NEKF performs three times better. For
the Kalman filter to perform better against the air target than the NEKF,
it sacrifices its performance for the other two targets. The NEKF clearly
shows that as a generalized tracking algorithm it can provide very accurate
performance.

4 Conclusions

Results from using the NEKF to track multiple targets with different
maneuver characteristics show that the NEKF was able to adapt and yield
good tracking performance for a variety of targets. The NEKF is therefore
an adaptive estimation routine that can be used as a generalized tracking
algorithm. The results, presented here, show that, for generalized tracking
where limited a priori information is available, the NEKF is an appropriate
choice as a tracking engine because it has the ability to adapt on-line to
improve the target motion model and hence tracking accuracy. The ability of
the NEKF to learn on-line is a key quality for either a stand-alone tracker or
an excellent model to be used in an IMM configuration.

Many modifications to the NEKF have been and can be incorporated to
improve performance for specific problems. The use of the NEKF as a tracking
system also has the advantage that it can learn a model of the current dy-
namics that can be used to better predict behavior of the target for problems
such as target intercept and impact-point prediction.
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Summary. Tracking moving objects is of central interest in mobile robotics. It is
a prerequisite for providing a robot with cooperative behaviour. Most algorithms
assume punctiform targets, which is not always suitable. In this work we expand the
problem to extended objects and compare the algorithms that have been developed
by our research group. These algorithms are capable of tracking extended objects.
It is shown that there are great differences between tracking robots, where a certain
shape can be assumed, and people.

1 Introduction and Related Work

Multirobot systems and service robots need cooperative capabilities to some
extend. This holds for robots that are supposed to move in a certain formation
or the interaction with people or robots. Apparently, there has to be knowledge
about the objects we wish to interact with. More precisely, we want to know
where these objects are. Thus, we need to track their positions.

Target tracking deals with the state estimation of one or more objects.
This is a well studied problem in the field of aerial surveillance with radar
devices [1] as well as in mobile robotics [2–5]. For their high accuracy and
relatively low price, laser range scanners are a good choice in robotics [6, 7].

Due to the high resolution of these sensors, one target is usually the source
of multiple returns of a laser scan. This conflicts with the assumption of punc-
tiform targets, where each target is the origin of exactly one measurement.
Therefore, one needs to be able to assign the obtained measurements to ex-
tended targets.

Tracking extended targets has similarities to tracking punctiform objects in
clutter, which denotes false alarms nearby a target that do not originate from
a target. We observe multiple readings which can be associated with the same
target for punctiform objects in clutter as well as for extended targets. Hence,
well known techniques for tracking punctual objects can be transferred to the

A. Kräußling: Tracking Extended Moving Objects with a Mobile Robot, Studies in

Computational Intelligence (SCI) 109, 513–530 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



www.manaraa.com

514 A. Kräußling

field of extended targets. These algorithms may apply the EM (Expectation
Maximization) [8] or the Viterbi method [9]. In the past years our research
group has established a number of these algorithms for tracking extended
targets [10,11].

This work mainly aims to compare several tracking algorithms, which were
introduced by our research group. The focus is on the superiority of the meth-
ods presented in [12, 13] compared to other techniques. Due to limited space
we were not able to motivate the use of these two algorithms in previous pa-
pers. Furthermore, we will discuss the question of what information we obtain
about a targets position using these methods. We will mainly regard objects
of circular shape, because we can treat such targets analytically. This already
covers a wide range of interesting targets, such as many service robots. When
tracking people, one has to deal with a variety of rapidly changing shapes.
This problem will be outlined in Sect. 5.

This work is organized as follows. In Sect. 2 we introduce the model which
we utilized for tracking extended targets and briefly summarize the charac-
teristics of the used algorithms. Section 3 examines the problem of tracking
circular objects. Then Sect. 4 presents experimental results. Furthermore, in
Sect. 5 we discuss people tracking. In Sect. 6 we consider the problem of cross-
ing targets. Finally, Sect. 7 summarizes the results and concludes with an
outlook on future research.

2 Models and Methods

The dynamics of the object to be observed and the observation process itself
are modeled by a hidden Gauss–Markov chain with the equations

xk = Axk−1 + wk−1 (1)

and
zk = Bxk + vk. (2)

xk is the objects state vector at time k, A is the state transition matrix, zk is
the observation vector at time k and B is the observation matrix. Furthermore,
wk and vk are supposed to be uncorrelated zero mean white Gaussian noises
with covariances Q and R.

Since the motion of a target in a plane has to be described a two dimen-
sional kinematic model is used.

xk =
(
xk1 xk2 ẋk1 ẋk2

)� (3)

With xk1 and xk2 being the Cartesian coordinates of the target and ẋk1 and
ẋk2 the corresponding velocities. zk just contains the Cartesian coordinates of
the target. In the usual applications of this model it is assumed that the target
is punctiform and there is only one measurement from the target. Nevertheless,
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this model is also applicable for tracking extended targets. Then zk will be a
representative feature generated from all measurements of the target. For the
coordinates the equation of a movement with constant velocity is holding, i.e.
it is

xk,j = xk−1,j + ∆Tẋk−1,j . (4)

Thereby ∆T is the time interval between the measurements at time step k−1
and k. For the progression of the velocities the equation

ẋk,j = e−∆T/Θẋk−1,j + Σ
√

1− e−2∆T/Θu(k − 1) (5)

with zero mean white Gaussian noise u(k) and E[u(m)u(n)�] = δmn is used.
The choice of the first term in (5) ensures that the velocity declines exponen-
tially, whereas the second term models the process noise and the acceleration.
For the parameters Θ and Σ the values Θ = 20 and Σ = 60 are good choices.
The advantage of using this model is that the Kalman filter [14] can be applied
for conducting the tracking process [1]. Therefore, the measurements are used
in the update equation

x(k|k) = x(k|k − 1) + Kk(zk − y(k|k − 1)) (6)

with x(k|k) being the estimate for the internal state xk, x(k|k−1) the predic-
tion for the internal state, y(k|k− 1) the prediction for the measurement and
Kk the Kalman gain. zk is generated from all mk measurements {zk,i}mk

i=1 in
the validation gate. Regarding punctiform targets with clutter there is at most
one measurement from the target and the rest are false alarms. When dealing
with extended objects in most cases all measurements in the validation gate
are from one target. An exception is when the targets get close to another
object, an obstacle or a wall. Only the point on the surface of the object, that
generates the measurement, for instance by reflecting the laser beam, differs
from measurement to measurement. The validation gate is implemented us-
ing the Kalman filter [1]. It selects the measurements from the target from all
360 measurements from the scan. All measurements with a distance from the
prediction y(k|k − 1) beyond a certain bound are excluded.

In this work we analyze several ways to use the measurements in the gate.
The first is to calculate zk as an unweighted mean of these measurements, i.e.
it is

zk =
∑mk

i=1 zk,i

mk
. (7)

The corresponding tracking algorithm is called Kalman filter algorithm (KFA)
and has been introduced in [13]. The second way is to calculate a weighted
mean as

zk =
mk∑
i=1

αizk,i. (8)

For the weights αi there are predominantly two possible choices. The first is
in analogy to the weights of the Probabilistic Data Association Filter (PDAF)
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[15] and the second is in analogy to the Probabilistic Multi Hypothesis Tracker
(PMHT) [8]. In the following we only refer to the PMHT algorithm, because
the results are similar. Here it is

αi =
exp
(
− 1

2 [νi(k)]� [Reff ]−1
νi(k)

)
∑mk

j=1 exp
(
− 1

2 [νj(k)]� [Reff ]−1
νj(k)

) . (9)

νi(k) is the innovation with

νi(k) = zk,i − y(k|k − 1) (10)

and
Reff = R + E (11)

with the measurement covariance R and an additional positive definite matrix

E =
(

780 0
0 780

)
, (12)

which models the extendedness of the targets. This algorithm is called
Weighted Mean Algorithm (WMA). A further improvement might be the
following approach: the weights can be viewed as parameters. Thus, the EM
(Expectation–Maximization) algorithm [16] can be applied using the Kalman
smoother [17] in order to further improve the estimates. The corresponding
algorithm is called EM based algorithm (EMBA) and has been introduced
in [10].

Another method is to calculate a separate estimate x(k|k)i for each mea-
surement zk,i. For the calculation of the estimates x(k|k)i in the update equa-
tion the measurement zk,i and the predictions x(k|k−1)j and y(k|k−1)j from
the predecessor j are used. For the determination of the predecessor there are
two possibilities: firstly, the length dk,j,i of the path ending in zk,i through
the measurements zk−1,j (j = 1, . . . , mk−1) can be minimized. The lengths
are defined recursively. They are

dk,j,i = dk−1,j + ak,j,i (13)

with
ak,j,i =

1
2
ν�

k,j,i[Sk]−1νk,j,i + ln
(√

|2πSk|
)

(14)

and the innovation
νk,j,i = zk,i − y(k|k − 1)j . (15)

Sk is the innovations covariance derived from the Kalman filter. Once the pre-
decessor zk−1,j(k−1,i) has been found the estimate x(k|k)i can be calculated
and the length dk,i of the path ending in zk,i is defined as dk,j(k−1,i),i. A sim-
ilar procedure is used for a punctiform object in clutter [9]. When regarding
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extended targets in most cases all measurements in the validation gate are
from the target. Therefore, it is not meaningful to consider the lengths dk−1,j

of the paths ending in the possible predecessors zk−1,j when determining the
predecessor. A better choice for the predecessor is the one for which the Ma-
halanobis distance [18]

ν�
k,j,i[Sk]−1νk,j,i (16)

is kept to a minimum. This procedure is similar to a nearest neighbour algo-
rithm [1].

When applying the Viterbi algorithm, the application of the validation
gate is performed in the following way: at first for every measurement zk−1,j

the gate is applied to all measurements at time k. This results in the sets Zk,j

of measurements which have passed the particular gate for the measurement
zk−1,j successfully. The set of all measurements zk,i, which are associated with
the target, is then just the union of these sets. The corresponding algorithms
can deal with multimodal distributions to some extend, which is a major
improvement when dealing with crossing targets.

There are two different ways to deal with the estimates delivered by the
Viterbi algorithm. The first is to choose one of these estimates as an estimate
of the position of a target. It can be chosen between the firstly delivered
estimate for instance or the one with the shortest corresponding path. The
corresponding algorithm is called Viterbi based algorithm (VBA) and has
been introduced in [11]. The second is to calculate an unweighted mean of all
estimates and use this mean as an estimate for the position of the target. The
corresponding algorithm is called Viterbi average algorithm (VAA), in case
the predecessors are defined minimizing the length of the path or modified
Viterbi average algorithm (MVAA), if the predecessors are defined minimizing
the Mahalanobis distance.

3 Tracking a Circular Object

In mobile robotics there are mainly two classes of objects to track – other
robots or people. Since a lot of service robots are of circular shape and these
objects can be treated analytically we will concentrate on this class of objects
in this section. We start with the following conjecture: the algorithms that
use a mean (i.e. KFA, WMA, EMBA, VAA or MVAA) estimate a point in
the interior of the object, that is the mean of the points on the surface of
the object, which are in the view of the observer. This mean, that we will
call balance point, will be calculated as follows. To simplify the problem, it
is assumed, that the centre of the observed circular object is at the origin of
the planar coordinate system and the centre of the observer lies on the x-axis.
The radius of the observed object is r and the distance from its centre to
the centre of the observer is denoted by d. The coordinates of the mean S
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in the interior are denoted by (x, y). Because of the problem’s symmetry it
immediately follows that y = 0. Moreover,

x =
1
φ

∫ φ

0

x(θ)dθ. (17)

For the definition of the angle φ and the definition of the distance x(θ) we
refer to Figs. 1 and 2. The latter is calculated from the known values d and
r and the angle θ as follows: By the proposition of Pythagoras

r2 = h2 + x2(θ) (18)

and
(d− x(θ))2 + h2 = l2. (19)

Furthermore
sin θ =

h

l
. (20)

From these three equations the term

x(θ) = d sin2 θ + cos θ
√

r2 − d2 sin2 θ (21)
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for calculating x(θ) can be derived. Together with (17) this results in

x =
1
φ

∫ φ

0

(
d sin2 θ + cos θ

√
r2 − d2 sin2 θ

)
dθ. (22)

According to Fig. 1 the expression

sin φ =
r

d
(23)

can be used for the derivation of the angle φ. The antiderivative of the first
term in the integral can be found in textbooks, e.g. [19]. Therefrom it is∫

sin2 θ dθ =
1
2

θ − 1
2

sin θ cos θ =
1
2

θ − 1
2

sin θ
√

1− sin2 θ. (24)

The antiderivative of the second term can be found by integration by substi-
tution. We use u = d sin θ. Therefrom it is∫

cos θ
√

r2 − d2 sin2 θ dθ =
1
d

∫ √
r2 − u2 du. (25)

The antiderivative of
∫ √

r2 − u2 du is [19]

1
2

(
u
√

r2 − u2 + r2 arcsin
u

r

)
. (26)

The combination of these results after some algebraic manipulations finally
delivers

x =
d

2
+

r

2d arcsin r
d

(πr

2
−
√

d2 − r2
)

. (27)

4 Experimental Results

Table 1 shows the results for different values of d used in our simulations. They
are in the range of the typical distances between the laser and the object,
which occur in the field of mobile robotics. For the radius r of the object we
have set r = 27 cm, which is in the range of the dimension of a typical mobile

Table 1. Angle φ and distance x

d (cm) φ (rad) φ (deg) x (cm)

100 0.2734 15.6647 23.3965
200 0.1354 7.7578 22.3607
400 0.0676 3.8732 21.7837
600 0.0450 2.5783 21.6103
800 0.0338 1.9366 21.4803



www.manaraa.com

520 A. Kräußling
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robot. Table 1 and Fig. 3 show the effect of the radius d on the balance point.
With growing radius d the observable area of the object increases and hence
the balance point S moves closer to the centre of the object.

In the following we consider the movement of the circular object around
the laser range scanner on a circle with radius R. To evaluate the perfor-
mance of the algorithms solving this problem simulated data has been used,
because we needed to know the true position of the target very accurately.
This is hard to achieve using data from a real experiment and has already
been mentioned by other authors [20]. Since we considered a movement on a
circle, the process noise only originates from the centripetal force, that keeps
the object on the circle. The simulations have been carried out for the values
of the radius R introduced in Table 1. The values for the standard deviation
σ of the measurement noise have been 0, 1, 3, 5, 7.5 and 10 cm. These values
are in the typical range of the errors of the commercial laser distance sensors,
which are commonly used in mobile robotics [21]. For each pair of R and σ 20
replications have been carried out. For each time step k the Euclidian distance
of the tracking algorithms’ output from the balance point has been calculated
and therefrom the average of these distances over the whole run has been
calculated. Finally, from these averages the average over the 20 cycles had
been calculated. The results with unit 1 cm are presented in the Tables 2–6.
The corresponding standard deviations calculated from the 20 cycles are small.
They reach from about 0.01 cm for the smaller standard deviations of the mea-
surement noise to about 0.1 cm for the larger variants.

It is apparent, that the outputs of all algorithms, except of the VAA,
produce a good estimate for the balance point S. Thereby, it should be pointed
out, that the KFA performs best. Only for the radius R = 100 cm the EMBA
performs slightly better. When comparing the WMA and the EMBA it turns
out, that the WMA performs better for some combinations of radius R and
measurement noise σ. This result might be of interest not only for tracking
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Table 2. Average distance from S for the KFA

R (cm) 100 200 400 600 800

σ = 0 0.9689 0.3654 0.2154 0.5597 0.2478
σ = 1 0.9698 0.3654 0.2202 0.5609 0.2575
σ = 3 0.9710 0.3805 0.2962 0.5744 0.3487
σ = 5 0.9853 0.4266 0.4133 0.6531 0.5392
σ = 7.5 1.0497 0.5617 0.5673 0.7845 0.7811
σ = 10 1.1054 0.6317 0.7409 0.9626 1.0119

Table 3. Average distance from S for the WMA

R (cm) 100 200 400 600 800

σ = 0 1.6247 1.0523 0.9999 1.2498 1.0860
σ = 1 1.6223 1.0499 1.0010 1.2496 1.0884
σ = 3 1.6062 1.0350 1.0124 1.2512 1.0753
σ = 5 1.5714 1.0164 1.0069 1.2625 1.1530
σ = 7.5 1.5592 1.0326 1.0661 1.2796 1.2661
σ = 10 1.5239 1.0125 1.1030 1.3799 1.4187

Table 4. Average distance from S for the EMBA

R (cm) 100 200 400 600 800

σ = 0 0.3324 0.5599 0.7941 1.0399 1.0744
σ = 1 0.3381 0.5704 0.8052 1.0555 1.0758
σ = 3 0.3882 0.6157 0.9085 1.1524 1.1583
σ = 5 0.4569 0.7386 1.0644 1.3136 1.4272
σ = 7.5 0.6274 0.9567 1.3267 1.5937 1.8012
σ = 10 0.7809 1.1097 1.6078 1.9553 2.2215

Table 5. Average distance from S for the VAA

R (cm) 100 200 400 600 800

σ = 0 6.9678 3.0463 3.0767 6.5293 6.4645
σ = 1 11.5044 4.5481 1.7062 5.8976 6.5338
σ = 3 12.2924 5.0634 2.4768 5.2141 7.1276
σ = 5 12.4933 6.6898 3.6525 5.2175 6.7693
σ = 7.5 14.2701 7.6690 4.6502 5.4802 6.7554
σ = 10 14.5553 8.3581 5.7584 6.2627 7.1146

applications, because it is widely assumed that the estimates can be bettered
by conducting the iterations of the EM algorithm.

Comparing the results for the VAA and the MVAA it is apparent, that
it is much better to choose the predecessor with respect to the Mahalanobis
distance. Since the balance point is estimated very accurately by most of the
algorithms, an estimate for the centre of the circular object can be derived
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Table 6. Average distance from S for the MVAA

R (cm) 100 200 400 600 800

σ = 0 2.1260 1.2587 1.7045 2.3523 2.6191
σ = 1 1.8316 1.1886 1.6577 2.4278 2.5511
σ = 3 1.5376 1.1199 1.6894 2.6091 2.7851
σ = 5 1.6535 1.3429 1.9600 2.8546 3.1441
σ = 7.5 1.9116 1.7742 2.4516 3.3260 3.6828
σ = 10 2.2212 2.1866 3.0103 3.9349 4.2878

observer balance point S

circular object
centre C

x

Fig. 4. Determination of the centre C

G

observer

possible points 
on the surface

Small distance

Fig. 5. Possible points, small distance between observer and object

directly. This is due to the fact, that the Euclidian distance x of the balance
point to the centre of the object can be calculated depending on R as above.
Furthermore, the observer, the balance point S and the centre C of the object
are lying on a straight line as indicated in Fig. 4. Thus, KFA, WMA, EMBA
and MVAA deliver good information about the position of the object.

The VBA algorithm calculates one position estimate for every single range
reading that originates from one target. So each estimate corresponds to one
point on the surface of this object. The algorithm then chooses one of these
estimates without having the knowledge to which point the estimation is cor-
responding. Therefore, we have a great uncertainty about the estimated posi-
tion. This is illustrated in Figs. 5–9. In Figs. 5 and 6 the points on the surface
of the object, which are in the view of the observer, are reproduced. The figures
show that for a greater distance of the object to the observer there is a larger
amount of points in the view of the observer, as already has been mentioned.
Thus, for a greater distance there is a greater uncertainty about which point
on the surface is estimated. The angle ϕG indicated in the figures is the same
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as the angle φ introduced in Fig. 1. Figures 7 and 8 show the possible positions
of the centre of the object. Again, there is a greater uncertainty for a greater
distance. Finally, Fig. 9 presents some examples for possible positions of the
object.

From Figs. 7 and 8 the following statement can be concluded: there is a
great uncertainty in the estimate of the centre of the object when applying
VBA. For large distances this uncertainty is in the range of the diameter of
the object. There are two further problems that complicate the situation:

– First, the point on the surface that is hit by the laser beam, changes from
time step to time step.

– Second, there is an additional error in form of the measurement noise,
which corrupts the data.

Recapitulating it can be concluded that the VBA delivers only sparse infor-
mation about the true position of the target.

Now it is referred to a second criterion for the comparison of the algo-
rithms, the computational complexity. As a measure for this property the
need of computing time for the fulfilment of the calculations for one time step
is used. The reason for this procedure is, that some of the algorithms are very
complex and therefore it would be very difficult to estimate for instance the
number of matrix multiplications. The algorithms have been implemented in
MATLAB and have been conducted on a Pentium IV with 2.8 GHz. The by
far simplest and fastest algorithms are KFA and WMA. They needed about
20 ms per time step for all combinations of radius R and standard deviation σ
of the measurement noise. The results for the EMBA and the VBA are given
in Tables 7 and 8. The results for VAA and MVAA are similar to those of the
VBA. The tables show that the computation time varies from about 70 ms
to about 200 ms for the EMBA and from about 80 ms to about 1.5 s for the
VBA. Of course the time for the EMBA depends on the number of iterations
and thus on the choice of the stop criterion. In our implementation the algo-
rithm stops iterating when the estimates of two consecutive iterations differ
less than one centimeter. The values of the VBA depend on the radius R. This
is due to the fact that the number of measurements from the target highly
depends on the radius. The complexity of the VBA strongly depends on the

Table 7. Computation time for the EMBA

R (cm) 100 200 400 600 800

σ = 0 0.1635 0.0859 0.0696 0.0832 0.1015
σ = 1 0.1662 0.0881 0.0701 0.0828 0.1026
σ = 3 0.1660 0.0870 0.0729 0.0900 0.1152
σ = 5 0.1646 0.0868 0.0784 0.1024 0.1359
σ = 7.5 0.1627 0.0897 0.0891 0.1201 0.1643
σ = 10 0.1627 0.0955 0.1008 0.1412 0.1959
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Table 8. Computation time for the VBA

R (cm) 100 200 400 600 800

σ = 0 1.4500 0.4079 0.1673 0.1023 0.0765
σ = 1 1.4615 0.4122 0.1712 0.1043 0.0779
σ = 3 1.4581 0.4199 0.1686 0.1026 0.0776
σ = 5 1.4739 0.4144 0.1648 0.1048 0.0783
σ = 7.5 1.4712 0.4124 0.1682 0.1028 0.0778
σ = 10 1.4814 0.4231 0.1652 0.1044 0.0783

number of measurements from the object. For example the predecessor, which
has to be determined for every new measurement, has to be chosen among all
the measurements from the last time step.

5 People Tracking

People tracking is a more difficult task. One cannot just assume a certain
shape, but has to deal with arbitrary, possibly shifting shapes, that can change
rapidly from scan to scan. As opposed to circular objects, where one just takes
the center of the target as the targets position, it is even hard to define which
point to use as an estimate. The problem becomes even more complex when
one of the legs is occluded by the other.

It is possible to assume the mean of all points on the scanned surface to
be the center. Then the KFA algorithm would produce a very good estimate
of the position. If there are more scans from one leg than from the other, the
estimated position shifts to the leg for which we have more returns.

To solve the problem more accurately, one could make sure that there is
a good coverage of the surface of a target by multiple sensors. For a known
circular shape we compute an estimate of the targets position for every single
sensor using KFA. Then we produce an unweighted mean of the results as an
estimate of the object position.

When tracking people, one should use all measurements from all sensors as
an input for KFA. However, one factor should be considered thereby. It might
happen that the same part of the object’s surface is covered by more than
one sensor. Then the corresponding measurements should be weighted less
depending on the number of those sensors. Otherwise the estimate delivered
by the KFA might shift to this part of the object.

An important prerequisite for this approach is that the coordinate systems
of the sensors almost coincide. Otherwise, we would not gain any advantage
by fusing the data, because KFA estimates the position of an object with an
accuracy of less than one centimeter as shown in the previous section. Right
now, our equipment only allows an accuracy of approximately ten centimeters
for the coordinate systems.
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6 Tracking Two Crossing Objects

Crossing targets is a central issue in tracking. When two targets cross, they
might not be distinguishable until they split again. Most existing algorithms
tend to loose one of the objects after crossing occurred. Thus, crossing targets
is a good benchmark for target tracking algorithms.

Figures 10 and 11 illustrate this problem using data from the EMBA
algorithm. There the targets are represented by ellipses, with the centre being
the estimated position. The ellipses themselves approximate the shapes of the
targets.

In Fig. 10, which is created from simulated data, there is always a minimal
distance between the targets, even during the crossing and the algorithm
separates the targets after the crossing. When the two objects cross each
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others path, we cannot always assign the readings correctly and hence, the
ellipses grow larger. The results look alike for WMA. VBA and KFA are not
able to solve this situation.

In Fig. 11 real data from an experiment with two persons walking around
was used. Here the situation is more complex, because of the close proximity
of the two persons. Furthermore, one of them is walking in the shadow of the
other for some time. Both EMBA and WMA fail to keep track of both targets.

Figure 12 illustrates the behaviour of MVAA using simulated data. The
results for VAA are similar. Starting with two separately tracked objects, this
algorithm fails to assign the readings after the crossing for either object. In-
stead, the readings from both objects are used to calculate the position of a
non existent object using the mean of the estimates. A similar behaviour is
known in the case of punctiform targets in clutter using the PDAF [1]. The
reason for this behaviour is the fact that we use the Viterbi algorithm to cal-
culate a validation gate for each measurement and the MVAA algorithm just
takes a mean of all estimated positions. Thus, we obtain a position estimate
that is between the real positions of the targets. When we obtain more read-
ings from one object than from the other, the estimate moves closer to that
object, what frequently occurs in the figure.

The fact that the VBA algorithm still processes the readings of both tar-
gets after the crossing can be utilized. This is the basis for a method which
is able to track the crossing targets stable. After the crossing occurred VBA
still tracks both objects using two clusters of estimates. Since both objects
are assigned to the same cluster, only the assignment of the clusters to the
targets is wrong. Thus, we developed a method to correctly assign the clusters
to the objects. It uses the results of the VBA algorithm and geometrical con-
siderations, which characterize the problem. The derived algorithm is called
Cluster Sorting Algorithm (CSA) and was introduced in [12].
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The major disadvantage of CSA is that it is using VBA for the whole
tracking process, even if no crossing occurred. This leads to higher computa-
tional demands and lower accuracy compared to KFA as outlined in Sect. 4.
Hence, we use KFA as long as there is no crossing and switch to CSA if we
detect crossing. Such a switching algorithm has been introduced in [13]. Both
algorithms, CSA and the switching method, solve the problem of crossing tar-
gets. Furthermore, CSA can be strongly accelerated using an additional filter
step to make the switching algorithm capable for real time applications also
during a crossing when it uses CSA [22].

7 Conclusions and Future Work

In this work several algorithms for tracking extended targets have been dis-
cussed. The problem was outlined for known circular shapes as for people
tracking, where no particular shape can be assumed. It was shown that the
algorithms, which use a mean of the measurements, produce a good state esti-
mation for fixed shape, circular objects. Here the KFA showed to be superior
to other methods in terms of the quality of the estimate and computational
complexity.

According to Table 2 KFA is able to estimate the position of the balance
point of an object with circular shape with a very high accuracy in the range
between 2 mm and 1.1 cm. Furthermore, due to 27 and Fig. 4, there is exact
knowledge about the position of the centre of the object, once the position
of the balance point is known. Thus, a mobile robot with circular shape can
be tracked very accurately using KFA and laser range scanners as sensors.
For this reason the problem of localization can be solved by our method
with an accuracy and computational complexity, which is superior to the
formerly known methods like [23–25]. Thereby both, the local and the global
localization problem can be solved. Local localization or tracking means the
consecutive position estimation of a mobile robot, when the initial position
is known. Global localization means the determination of the initial position
from scratch. As an application example of the method one might think of
the surveillance of an art museum when it is closed. Then one has to deal
with wide, empty spaces, which can well be covered by some laser scanners
embedded into the walls. The mobile robots, which need to have a circular
shape in the plane, that is observed by the laser scanners, can then be localized
with a very high accuracy when they move from room to room to monitor
them. The costs for the laser scanners and the mobile robots are negligible
compared to the adversity of the theft of a famous painting. A paper with
further details is under review [26].

Most of the methods presented here do not solve the problem of crossing
targets. Only EMBA and WMA are able to keep track of both targets when
using simulated data, but they fail in real experiments. For punctual objects in
the field of aerial surveillance this problem is well known and several solutions
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exist [8,27,28]. However, when tracking extended targets in the field of mobile
robotics, there are major disagreements [29]. Hence, these techniques will fail
when being applied for tracking extended targets in mobile robotics.

The problem of extended crossing targets is well known in the field of
mobile robotics [2,30]. There it has been explicated that this problem is par-
ticularly difficult to solve. Nevertheless, our research group developed two
algorithms that are able to keep track of the targets [12,13]. The first is called
Cluster Sorting Algorithm (CSA) and uses VBA with an additional cluster-
ing routine [12]. The second is a switching algorithm that utilizes CSA only
during crossing and KFA else [13]. Therefore, these two algorithms are pre-
dominant to the other represented methods. Since CSA and the switching
algorithm only solve the problem in the case of just two targets, finally an
improved switching algorithm has been developed, that solves the problem
of an arbitrary number of crossing extended targets in the context of mobile
robotics [29].
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Summary. Different solutions have been proposed for multiple objects tracking
based on probabilistic algorithms. In this chapter, the authors propose the use of a
single particle filter to track a variable number of objects in a complex environment.
Estimator robustness and adaptability are both increased by the use of a clustering
algorithm. Measurements used in the tracking process are extracted from a stereo-
vision system, and thus, the 3D position of the tracked objects is obtained at each
time step. As a proof of concept, real results are obtained in a long sequence with a
mobile robot moving in a cluttered scene.

1 Introduction

Probabilistic algorithms in their different implementations (Multi-Hypothesis
Techniques – MHT – [1], Particle Filters – PF – [2,3] and their diversifications
[4, 5]) have fully shown their reliability in estimation tasks. Nowadays these
methods are widely applied to solve positioning problems in robot autonomous
navigation [6, 7].

The idea of tracking multiple objects appeared with the first autonomous
navigation robot to overcome the obstacle avoidance problem, and soon prob-
abilistic algorithms, such as PFs [8,9] and Kalman Filters (KFs) [10,11], were
applied to achieve this aim. The objective is, in any case, to calculate the pos-
terior probability (p(�xt|�y1:t)1) of the state vector �xt, that informs about the
position of the objects to track, in the recursive two steps standard estima-
tion process (prediction-correction), in which, at least, some of the involved
variables are stochastic, and by means of the Bayes rule.

To solve the multiplicity problem, the use of an expansion of the state
vector (�χt =

{
�x1

t , �x
2
t , . . . , �x

k
t

}
) that includes the model of all objects to track

was the first solution proposed in [12].

1 Definition of all variables is included in Table 1.
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Table 1. Variables definition

Variables Definition

xt State vector. In the tracking application this vector
contains the 3D position and the 2D ground speed
in Cartesian coordinates

xt|t−1 State vector prediction
yt Measurements vector. In the tracking application

this vector contains the 3D position in Cartesian co-
ordinates

f(xt, ut, ot) Transition model. ut is the input vector and ot is the
noise vector related with the states

p(xt|xt−1) Transition model in the model Markovian definition
p(y1:t) Measurements distribution
h(xt, rt) Observation model. rt is the noise vector related with

the measurements
p(yt|xt) Observation model in the model Markovian defini-

tion. This density informs about measurements like-
lihood

p(xt|y1:t) Belief or posterior distribution. Result of the state
vector probabilistic estimation

p(xt|y1:t−1) Prior distribution. Probabilistic prediction of the
state vector

St =
{
x

(i)
t , w̃

(i)
t

}n

i=1
Particle set. Discrete representation of the belief
used in the PF. Defined by n normal weighed w̃

(1:n)
t

evaluations of the state vector x⇀(1:n)
t

St|t−1 Prediction of the particle set
n Total number of particles
nm,t = γt · n Number of particles to be inserted at the

re-initialization step

w(x0:t) ≡ wt =
{

w
(i)
t

}n

i=1
Importance sampling function. Continuous represen-
tation of the weights array wt

q(xt|x0:t−1y1:t) Best approximation to the belief
m Number of measurements in the set
Yt = {y}m

i=1 Measurements set
k Number of clusters
G1:k,t ≡ {g1:k,t, L1:k,t} Clusters set. Each cluster is defined by its centroide

g1:k,t in the clustering characteristics space, and its
member set L1:k,t

{di,j}m,k
i=1,j=1 Distance defined in the clustering characteristic

space between the centroides g1:k,t and the data set
Yt = {y}m

i=1 in the tracking application

The computational load of the resultant estimator does not allow achieving
a real time execution of the algorithm for more than four or five objects [13].

Another solution for the multiple objects tracker is to use a standard
estimator to track each object but, apart from the inefficiency of the final
algorithm [14], it cannot deal easily with a dynamic number of objects [15].
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In any case, in order to achieve a robust multi-tracking system, it is nec-
essary to include an association algorithm to correctly insert the information
included in the observation model to the estimation process. Most of the asso-
ciation solutions are based on the Probabilistic Data Association (PDA) the-
ory [16], such as the Joint Probabilistic Particle Filter (JPDAF) like in [17]
or in [18]. Again, the problem related to these techniques is the execution
time.

In this context the authors propose in [19] another solution to the multi-
tracking problem based on a PF. In this case, the multi-modality of the filter is
exploited to perform the estimation task for various models with a single PF,
and a clustering algorithm is used as association process in the multi-modal
estimation, whose deterministic behavior is also exploited in order to increase
the multi-tracker robustness.

The algorithm obtained is called Extended Particle Filter with Clustering
Process (XPFCP). This solution has been tested in complex indoor environ-
ments with sonar [19] and vision data [20] with good results.

The choice of vision sensors to implement the observation system of the
tracking application guarantees a rich amount of information from the objects
in the world. For this reason, the final development described here is based
on visual information.

In this chapter, a general revision of the global tracking system is included
and a complete analysis of the results obtained with the multi-tracking pro-
posal is exposed.

2 System Description

The complete obstacle detection and tracking system proposed is described in
Fig. 1. The objective is to design a tracker that detects and predicts the move-
ment and position of dynamic and static objects in complex environments, so
two main constraints are taken into account in the development:

• Indoor environment is unknown, because no map information is available,
and complex, because hard dynamic and crowded situations are frequent.

• A real time application in a modular organization has to be achieved, in
order to attach it to any robotic autonomous navigator.

As it can be noticed in Fig. 1, three main processes are included in the
global tracking system:

1. A stereovision system is used to obtain 3D position information from the
elements in the environment.

2. The extracted 3D position data is then classified in two types : mea-
surements related with the objects to track; and information from the
environmental structure that can be used in a partial-reconstruction
process.
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Stereovision system

Classification:
Object / Structure

Obstacle Detection

XPFCP:
Probabilistic multi-tracker

based on a PF with a
clustering process

Fig. 1. Block diagram of the global tracking system

3. A probabilistic algorithm, the XPFCP, with two main components:
• An extended PF is used to implement the multi-modal tracker. Using

this kind of algorithm it is possible to estimate a variable number of
probabilistic non-linear and non-Gaussian models with a single density
function.

• A clustering algorithm is inserted in the PF to develop the association
process task and to increase the robustness and adaptability of the
multi-modal estimator.

Descriptions of each one of the modules presented are completed in the
following sections.

3 The Estimation Model

The main objective of XPFCP is to estimate the movement of objects around
an autonomous navigation platform. In order to develop the tracking process
a position estimation model has to be defined.

State vector encoding the objects position and speed in Cartesian coordi-
nates at time t is represented by �xt.

From a probabilistic point of view, this state vector can be expressed by
a density function p(�xt|�y1:t), also called belief.

The evolution of this belief p(�xt|�y1:t−1) is defined by a Markov Process,
with transition kernel p(�xt|�xt−1), as follows:

p(�xt|�y1:t−1) =
∫

p(�xt|�xt−1) · p(�xt−1|�y1:t−1) · ∂�x (1)
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The transition kernel is derived from a simple motion model, which can
be expressed as follows:

p(�xt|�y1:t−1) ≡ �xt|t−1 = f(�xt−1, �ot−1),

�xt|t−1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 ts 0
0 1 0 0 ts
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ · �xt−1 + �ot−1

(2)

On the other hand, the measurements vector �yt contains the 3D position
information sensed by the vision system (see Table 1).

The probabilistic relation between this vector �yt and the state one �xt is
given by the likelihood p(�yt|�xt), that defines the observation model from a
stochastic approach.

The observation model, that describes the deterministic relation expressed
by the likelihood, is defined as follows:

p(�yt|�xt) ≡ �yt = h(�xt, �rt),

�yt =

⎡
⎣1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

⎤
⎦ · �xt + �rt (3)

Both observation and motion models are used to estimate the state vector over
time. As commented in the introduction section, different algorithms can be
used in order to achieve this functionality. Our contribution in this point is to
use a single PF to obtain a multi-modal distribution p(�xt|�y1:t) that describes
the estimated stochastic position of every object being tracked at each sample
time t.

4 The Stereovision Classifier

Most of tracking systems developed in last years for autonomous navigation
and surveillance applications are based on visual information; this is due to
the diverse and vast amount of information included in a visual view of the
environment.

Developing obstacle tracking tasks for robot’s navigation requires 3D in-
formation about the objects position in the robot moving environment.

As shown in Fig. 1, position information obtained with the stereovision
system is related both with the environment and the objects to track. There-
fore it is needed a classification algorithm in order to organize measurements
coming from the vision system in two groups or classes:

• Objects class. Formed by points that inform about position of objects.
These conform the data set that is input in the multiple objects tracker
as the measurement vector �yt.
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Capture one Left / Right frame

Canny Left

XZ Neighborhood Filter
+ Height Noise Filter

STRUCTURE CLASS
Partial-Reconstruction of the
environmental structure in 3D

OBSTACLES CLASS
3D position estimation

of the obstacles

Epipolar Matching to Obstacle
points (ZNCC Correlation)

Epipolar Matching to Structural Objects:
Hough Long Lines (ZNCC Correlation)

Hough 2D in Left
Looking for Long Lines

Structural Objects: Long Lines in Canny Left
Obstacles: Canny Left – Long Lines

Fig. 2. Block diagram of the stereovision classifier and object detector

• Structure class. Formed by points related to elements in environmental
structure (such as floor and walls). This data set can be used to implement
a partial reconstruction of the environment in which the tracked objects
and the robot itself are moving.

Figure 2 shows the proposal to classify the measurements extracted with
the stereovision system. The detection and classification process is deeply
described by the authors in [21], but a slight revision of its functionality is
included in the following paragraphs:

1. The stereovision system proposed is formed by two synchronized black and
white digital cameras statically mounted to acquire left and right images.

2. As the amount of information in each image is too big, a canny filter is
applied to one of the pair of frames.

3. The classification process is performed to the edge pixels that appear
in the canny image. Environmental structures edges have the common
characteristic of forming long lines in the canny image. Due to this fact,
the Hough transform has been chosen as the best method to define the
pixels from the canny image that should be part of the structure class.
The rest of points in the canny image are assigned to the objects class.

4. Two correlation processes are used in order to find the matching point of
each member in both classes. 3D position information is obtained with a
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matching process applied to the pixels of each pair of frames, using the
epipolar geometry that relates the relative position of the cameras.

With the described functionality, the classification process here proposed
behaves as an obstacle detection module.

Also, this pre-processing algorithm selects wisely the most interesting data
points from the big set of measurements that is extracted from the environ-
ment. This fact is especially important in order to achieve the real time spec-
ification pursuit. In fact, a processing rate of 15–33 fps has been achieved in
different tests run with this classifier.

Some results of the classification process described are included in the
results section of this chapter.

5 The Estimation Algorithm

A particle filter (PF) is used as a multi-modal tracker to estimate position and
speed of objects in the environment, from the measurement array obtained in
the classification process.

PF is a particularization of the Bayesian estimator in which the densities
related to the posterior estimation (also called belief) is discretized. A detailed
description of the PF mathematical base can be found in [2] and in [5].

As the state vector is not discretized, like it is in most of Bayes filter
implementations, the PF is more accurate in its estimation than the KF or
estimators based on a grid (MonteCarlo estimators). Moreover, due to the
same reason, the computational load of this Bayes filter form is lower in this
than in other implementations, and thus more adequate to implement real
time estimation.

Finally, PFs include an interesting characteristic for multi-tracking ap-
plications: the ability of representing multiple estimation hypotheses with a
single algorithm, through the multi-modality of the belief. This facility is not
available in the optimal implementation of the Bayes estimator, the KF.

For all these reasons, the PF has been thought as the most appropriated
algorithm to develop a multi-tracking system.

5.1 The XPFCP

Most of the solutions to the tracking problem, based on a PF, do not use the
multi-modal character of the filter in order to implement the multiple objects
position estimation task. The main reason of this fact is that the association
process needed to allow the multi-modality of the estimator is very expensive
in execution time (this is the case of the solutions based on the JPDAF) or
lacks of robustness (as it is the case in the solution presented in [22]).

The XPFCP here presented is a multi-modal estimator based on a single
PF that can be used with a variable number of models, thanks to a clustering
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process that is used as association process in the estimation loop. The func-
tionality of the XPFCP is presented in the following paragraphs.

The main loop of a standard Bootstrap PF [12] based on the SIR algo-

rithm [13] starts at time t with a set St−1 =
{
�x

(i)
t−1, w̃

(i)
t−1

}n

i=1
of n random

particles representing the posterior distribution of the state vector estimated
p(�xt−1|�y1:t−1) at the previous step. The rest of the process is developed in
three steps, as follows:

1. Prediction step. The particles are propagated by the motion model
p(�xt|�xt−1) to obtain a new set St|t−1 =

{
�x

(i)
t|t−1, w̃

(i)
t−1

}n

i=1
that represents

the prior distribution of the state vector at time t, p(�xt|�y1:t−1).

2. Correction step. The weight of each particle �wt =
{

w
(i)
t

}n

i=1
≡ w(�x0:t)

is then obtained comparing the measurements vector �yt and its predicted
value based on the prior estimation h(�xt|t−1). In the Bootstrap version of
the filter, these weights are obtained directly from the likelihood function
p(�yt|�xt), as follows:

w(�x0:t) = w(�x0:t−1) ·
p(�yt|�xt) · p(�xt|�xt−1)
q(�xt| �x0:t−1, �y1:t)

−−−−−−−−−−−−−−−−−−→
q(�xt|�x0:t−1,�y1:t)∝p(�xt|�xt−1)

w(�x0:t) = w(�x0:t−1) · p(�yt|�xt)
(4)

3. Selection step. Using the weights vector �wt =
{

w
(i)
t

}n

i=1
, and applying a

re-sampling scheme, a new set St =
{
�x

(i)
t , w̃

(i)
t

}n

i=1
is obtained with the

most probable particles, which will represent the new belief p(�xt|�y1:t).

The standard PF can be used to robustly estimate the position of any
kind of a single object defined through its motion model, but it cannot be
directly used to estimate the position of appearing objects because there is
not a process to assign particles to the new estimations.

In order to adapt the standard PF to be used to track a variable number of
elements, some modifications must be included in the basic algorithm. In [22]
an adaptation of the standard PF for the multi-tracking task is proposed. The
algorithm described there was nevertheless not finally used because it is not
robust enough.

The extension of the PF proposed by the authors in [20] includes a clus-
tering algorithm to improve the behavior of the first extended PF, giving as
a result the XPFCP process, shown in Fig. 3.

The clustering algorithm, whose functionality is presented in next section,
organizes the vector of measurements in clusters that represent all objects in
the scene. These clusters are then wisely used in the multi-modal estimator.
Two innovations are included in the standard PF to achieve the multi-modal
behavior:
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Fig. 3. Description of the XPFCP functionality

• With a new re-initialization step. nm,t from the n total number of par-
ticles that form the belief p(�xt|�y1:t) in the PF are directly inserted from
the measurements vector �yt in this step previous to the prediction one.
With this modification, measurements related to newly appearing objects
in the scene have a representation in the priori distribution p(�xt−1|�y1:t−1).
To improve the robustness of the estimator, the inserted particles are not
selected randomly from the array of measurements �yt−1 but from the k
clusters G1:k,t−1. Choosing measurements from every cluster ensures a
probable representation of all objects in the scene, and therefore, an in-
creased robustness of the multi-tracker. Thanks to this re-initialization
step the belief dynamically adapts itself to represent the position hypoth-
esis of the different objects in the scene.

• At the Correction step. This step is also modified from the standard PF.
On one hand, only n−nm,t samples of the particle set have to be extracted
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in this step, as the nm,t resting ones would be inserted with the re-
initialization. On the other hand, the clustering process is also used in
this step, because the importance sampling function pi(�yt| �x(i)

t ) used to
calculate each particle weight w

(i)
t is obtained from the similarity between

the particle and the k cluster centroides �g1:k,t. Using the cluster centroides
to weight the particles related to the newly appeared objects, the proba-
bility of these particles is increased, improving the robustness of the new
hypotheses estimation. Without the clustering process, the solution pro-
posed in [22] rejects these hypotheses, and thus, the multi-modality of the
PF cannot be robustly exploited.

Figure 3 shows the XFPCP functionality, described in previous paragraphs.
Some application results of the multi-modal estimator proposed by the authors
to the multi-tracking task are shown at the end of this chapter. The robustness
of this contribution is demonstrated there.

5.2 The Clustering Process

Two different algorithms have been developed for clustering the set of mea-
surements: an adapted version of the K-Means for a variable number of clus-
ters; and a modified version of the Subtractive fuzzy clustering. Its reliability
is similar, but the proposal based on the standard K-Means shows higher
robustness rejecting outliers in the measurements vector. A more detailed
comparative analysis of these algorithms can be found in [23].

Figure 4 shows the functionality of the proposed version of the K-Means.
Two main modifications to the standard functionality can be found in the
proposal:

1. It has been adapted in order to handle a variable and initially unknown
number k of clusters G1:k, by defining a threshold distM in the distance
di,1:k used in the clustering process.

2. A cluster centroides’ prediction process is included at the beginning of
the algorithm in order to minimize its execution time. Whit this informa-
tion, the process starts looking for centroides near their predicted values
�g0,1:k,t = �g1:k,t|t−1.

A validation process is also added to the clustering algorithm in order
to increase the robustness of the global algorithm to spurious measurements.
This process is useful when noisy measurements or outliers produce a cluster
creation or deletion erroneously. The validation algorithm functionality is the
following:

• When a new cluster is created, it is converted into a candidate that will
not be used in the XPFCP until it is possible to follow its dynamics.

• The same procedure is used to erase a cluster when it is not confirmed
with new measurements for a specific number of times.
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Fig. 4. Description of the K-Means clustering algorithm

The validation process is based in two parameters, which are calculated
for each cluster:

• Distance between the estimated and the resulting clusters centroide. The
centroides estimation process, already commented, is also used in the vali-
dation process. The estimated value of the centroides �g1:k,t|t−1 is compared
with its final value at the end of the clustering process �g1:k,t, in order to
obtain a confidence value for the corresponding cluster validation.

• Cluster likelihood. A cluster probability value is calculated as a function
of number of members in each cluster L1:k.

The effectiveness of the clustering proposal is demonstrated in the follow-
ing section, with different results.
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6 Results

The global tracking algorithm described in Fig. 1 has been implemented in a
mobile platform. Different tests have been done in unstructured and unknown
indoor environments. Some of the most interesting results extracted from these
tests are shown and analyzed in this section.

The stereovision system is formed by two black and white digital cameras
synchronized with a Firewire connection and located on the robot in a static
mounting arrangement, with a gap of 30 cm between them, and at a height of
around 1.5 m from the floor.

The classification and tracking algorithms run in an Intel Dual Core
processor at 1.8 GHz with 1 GB of RAM, at a rate of 10 fps. The mean exe-
cution time of the application is 80 ms.

6.1 Results of the Stereovision Classifier

Figure 5 shows the functionality of the classifier. Three sequential instants of
one of the experiments are described in the figure by a pair of images organized
vertically, and with the following meaning:

• Upper row shows the edge images obtained from the canny filter directly
applied to the acquired frame. Both obstacles and environmental structure
borders are mixed in those images.

• Bottom row shows the final frames in which points assigned to the objects
class are highlighted over obstacle figures.

From the results shown in Fig. 5, it can be concluded that the classification
objective has been achieved. Only points related to the obstacles in the scene
have been classified in the obstacles class. As it can be noticed, the analyzed
experiment has been developed in a complex and unstructured indoor envi-
ronment, where five static and dynamic objects are present and cross their

Fig. 5. Results of the classification algorithm in a real situation
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paths generating partial and global occlusions. In any case, the proposed clas-
sification algorithm is able to extract 3D position points from every object in
the scene.

The set of 3D position points assigned to the objects class can now be
used in the multi-tracking task.

Nevertheless, the number of objects present in each final frame in Fig. 5
cannot be easily extracted from the highlighted set of points.

Furthermore, it can be noticed that the set of points are not equally distrib-
uted among all objects in the environment, and hence, the tracking algorithm
should be able to manage object hypotheses with very different likelihood.

6.2 Results of the Estimation Algorithm

Figure 6 displays the functionality of the XPFCP in one of the tested situa-
tions. Three sequential instants of the estimation process are represented by
a pair of images.

• Upper row displays the initial frames with highlighted dots representing
the measurement vector contents obtained from the classification process,
and rectangles representing the K-Means output.

• Lower row shows the same frame with highlighted dots representing each
of the obstacle position hypotheses that the set of particles define at the
XPFCP output. This final set of particles has also been clustered using
the same K-Means proposal in order to obtain a deterministic output for
the multi-tracker. Rectangles in this lower frame represent the clustered
particles.

Fig. 6. Results of the multi-tracking algorithm XPFCP in a real situation
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Table 2. Rate of different types of errors obtained with the XPFCP at the output of
the K-Means, and at the end of the multi-tracking task in a 1,054 frames experiment
complex situations with five and six objects

K-Means (% frames XPFCP (% frames with
with error) error)

Missing 10.9 2.9
Duplicates 6.1 0
2 as 1 3.9 0
Total 20.9 2.9

Comparing the upper and lower image in Fig. 6, it can be noticed that the
tracker based on the XPFCP can solve tracking errors such as object dupli-
cations generated in the input clustering process. An example of an object
duplication error generated by the K-Means and successfully solved by the
XPFCP can be seen in the third vertical pair of images (on the right side, in
the last sequential instant) of Fig. 6.

Table 2 shows a comparison between the errors at the output of the clus-
tering process and at the end of the global XPFCP estimator. In order to
obtain these results an experiment of 1,054 frames of complex situations sim-
ilar to the ones presented Figs. 5 and 6 has been run. The results displayed in
Table 2 demonstrate the reliability and robustness of the tracker facing up to
occlusions and other errors.

Figure 7 displays the tracking results extracted from the XPFCP output
in another real time experiment. In this case 9 sequential instants of the
experiment are shown, and each image represents one of them, from (a) to
(i). The meaning of every frame is the same as in the lower row in Fig. 6.

The results displayed in Fig. 7 show that the tracker estimates correctly
each obstacle position in the dynamic and unstructured indoor environment.

7 Conclusions

In this chapter the authors describe the functionality of a global tracking sys-
tem based on vision sensors to be used by the navigation or obstacle avoidance
module in an autonomous robot.

In order to achieve this objective, a specific classification algorithm for
stereovision data has been developed. This process is used to separate visual
position information related with obstacles from the one related with the
environment.

An algorithm, called XPFCP, is used to estimate obstacles’ movement and
position in an unstructured environment. It has been designed as the kernel
of the multi-tracking process. The XPFCP is based on a probabilistic multi-
modal filter, a PF, and is completed with a clustering process based on a
standard K-Means.
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Fig. 7. Sequential images of a real time experiment with stereovision data

Results of the different processes involved in the global tracking system
have been presented, demonstrating the successful behaviour of the different
contributions. The main conclusions of these proposals are:

• The proposed tracking system has shown high reliability in complex situati-
ons where a variable number of static and dynamic obstacles are constantly
crossing, and no preliminary knowledge of the environment is available.

• It has been demonstrated that the estimation of a variable number of
systems can be achieved with a single algorithm, the XPFCP, and without
imposing model restrictions.

• The use of a clustering process as association algorithm makes possible a
robust multi-modal estimation with a single PF, and without the compu-
tational complexity of some other association proposals such as the PDAF.

• Thanks to the simplicity of its functional components (a PF and a modified
K-Means) the XPFCP accomplishes the real time specification pursuit.

• Though vision sensors are used in the tracking process presented in the
chapter, some other e XPFCP designed can easily handle data coming up
from different kinds of sensors. This fact makes the tracker proposed more
flexible, modular, and thus, easy to use in different robotic applications
than other solutions proposed in the related literature.



www.manaraa.com

546 M. Marrón et al.

Acknowledgments

This work has been financed by the Spanish administration (CICYT:
DPI2005-07980-C03-02).

References

1. D.B. Reid, An algorithm for tracking multiple targets, IEEE Transactions on
Automatic Control, vol. 24, no 6, pp. 843–854, December 1979

2. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle
filters for online nonlinear non-gaussian bayesian tracking, IEEE Transactions
on Signal Processing, vol. 50, no 2, pp. 174–188, February 2002

3. N.J. Gordon, D.J Salmond, A.F.M. Smith, Novel approach to nonlinear/non-
gaussian bayesian state estimation, IEE Proceedings Part F, vol. 140, no 2, pp.
107–113, April 1993

4. A. Doucet, J.F.G. de Freitas, N.J. Gordon, Sequential montecarlo methods in
practice. Springer, New York, ISBN: 0-387-95146-6, 2000

5. R. Van der Merwe, A. Doucet, N. de Freitas, E. Wan, The unscented particle
filter, Advances in Neural Information Processing Systems, NIPS13, November
2001

6. S. Thrun, Probabilistic algorithms in robotics, Artificial Intelligence Magazine,
Winter 2000

7. D. Fox, W. Burgard, F. Dellaert, S. Thrun, Montecarlo localization. Efficient
position estimation for mobile robots, Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI99), pp. 343–349, Orlando, July 1999

8. M. Isard, A. Blake, Condensation: Conditional density propagation for visual
tracking, International Journal of Computer Vision, vol. 29, no 1, pp. 5–28, 1998

9. K. Okuma, A. Taleghani, N. De Freitas, J.J. Little, D.G. Lowe, A boosted
particle filter: multi-target detection and tracking, Proceedings of the Eighth
European Conference on Computer Vision (ECCV04), Lecture Notes in Com-
puter Science, ISBN: 3-540-21984-6, vol. 3021, Part I, pp. 28–39 Prague, May
2004

10. T. Schmitt, M. Beetz, R. Hanek, S. Buck, Watch their moves applying prob-
abilistic multiple object tracking to autonomous robot soccer, Proceedings of
the Eighteenth National Conference on Artificial Intelligence (AAAI02), ISBN:
0-262-51129-0, pp. 599–604, Edmonton, July 2002

11. K.C. Fuerstenberg, K.C.J. Dietmayer, V. Willhoeft, Pedestrian recognition in
urban traffic using a vehicle based multilayer laserscanner, Proceedings of the
IEEE Intelligent Vehicles Symposium (IV02), vol. 4, no 80, Versailles, June 2002

12. J. MacCormick, A, Blake, A probabilistic exclusion principle for tracking mul-
tiple objects, Proceedings of the Seventh IEEE International Conference on
Computer Vision (ICCV99), vol. 1, pp. 572–578, Corfu, September 1999

13. H. Tao, H.S. Sawhney, R. Kumar, A sampling algorithm for tracking multiple
objects, Proceedings of the International Workshop on Vision Algorithms at
(ICCV99), Lecture Notes in Computer Science, ISBN: 3-540-67973-1, vol. 1883,
pp. 53–68, Corfu, September 1999



www.manaraa.com

A Bayesian Solution to Robustly Track Multiple Objects from Visual Data 547

14. J. Vermaak, A. Doucet, P. Perez, Maintaining multimodality through mixture
tracking, Proceedings of the Ninth IEEE International Conference on Computer
Vision (ICCV03), vol. 2, pp. 1110–1116, Nice, June 2003
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